• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Regenerating damaged eyes with mussel protein and amniotic membrane

Bioengineer by Bioengineer
September 6, 2025
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The eye is the first sensory organ that recognizes the presence or shape of an object. The conjunctiva is a thin mucous membrane that covers the front half of the eyeball. It protects the eye by secreting mucus and tears for lubrication, and prevents microorganisms from entering. However, since it is exposed to the air, it is susceptible to damages by microorganisms, bacteria, or dust. In fact, if fibrovascular tissues are left to propagate on its surface, they can lead to diseases like pterygium, which can cause visual deterioration. To treat such conditions, an operation to remove and regenerate the damaged conjunctiva is performed. Recently, a Korean research team has developed a new method for performing sutureless amniotic membrane transplantation using the mussel adhesive protein.

Professor Hyung Joon Cha’s research team at POSTECH (Ph.D. candidate Seong-Woo Maeng, Dr. Tae Yoon Park) with the team led by Professor Woo Chan Park of the Department of Ophthalmology at Dong-A University College of Medicine (Dr. Ji Sang Min, currently at Kim’s Eye Hospital of the Konyang University School of Medicine) have together applied a light-curable protein bioadhesive named FixLight to an animal model that simulated the transplantation of the amniotic membrane on an actual ocular surface. As a result, it was confirmed that the operation could be completed more than five times faster than the traditional suture method and the therapeutic effect of the conjunctival regeneration through stably bonded amniotic membranes could successfully replace the conventional procedure.

The amniotic membrane is the innermost membrane of the placenta that surrounds and protects the embryo. Since it contains many factors that promote epithelial regeneration, performing amniotic transplantation to reconstruct the ocular surface has been widely practiced. However, the current method stitches the membrane with sutures and fixes it to the surface of the eyeball, which leaves a scar. And since precise sutures are required due to the thinness of the amniotic membrane, the operation is considerably time-consuming.

To this, the POSTECH research team has developed a light-curable adhesive that exists in a liquid state when unexposed to light, but changes into a hydrogel within a few seconds when exposed to visible light of a specific wavelength. Going a step further this time, in joint effort with researchers from Dong-A University College of Medicine, the amniotic membrane was transplanted without sutures on the ocular surface of a rabbit model with conjunctiva defects using a light-curable bioadhesive.

The joint research team used a visible light-curable bioadhesive with liquid-solid photocrosslinking characteristics in the amniotic membrane transplantation surgery, focusing on the high transparency of the amniotic membrane. After evenly coating the liquid adhesive, the amniotic membrane was adhered to the defect site by crosslinking it with light of a specific wavelength. In an experiment using a rabbit conjunctiva defect model, the researchers observed stable tissue adhesion ability that showed no significant difference from suture-treated cases even on the wet surface of the eye. In addition, after epithelialization progressed over the transplanted amniotic membrane, the adhesive completely biodegraded and regenerated into an integrated epithelial tissue.

Professor Hyung Joon Cha of POSTECH explained, “We confirmed the effectiveness of a new amniotic membrane transplantation method for conjunctival reconstruction in an actual animal model using the mussel adhesive protein, an original biomaterial.” He added, “It is anticipated to be highly useful as a safe bioadhesive to replace sutures in various medical fields.”

FixLight – the visible light-curable protein bioadhesive – shows promise for commercialization in the near future as it has completed the technology transfer to Nature Gluetech Co., Ltd. and is awaiting clinical trials as a safe bioadhesive that can fully replace surgical sutures.

“The amniotic membrane transplantation is an important operation in ocular surface reconstruction and this visible light-curable bioadhesive enabled facile and rapid operation,” remarked Professor Woo Chan Park of Dong-A University College of Medicine. “This technique shows promise to be applicable to other ophthalmological surgeries such as closing of incisions after cataract operation or other transplantations of the ocular surface, such as conjunctival autografting.”

###

The findings from this research were published online in Advanced Healthcare Materials, an international journal on biomaterials. The study was carried out as part the Korea Health Technology R&D Project through the Korea Health Industry Development Institute funded by the Ministry of Health and Welfare, the Nano-New Materials Core Technology Development Program funded by the Ministry of Science and ICT, and the Marine Biotechnology Program of the Korea Institute of Marine Science & Technology Promotion funded by the Ministry of Oceans and Fisheries of Korea.

Media Contact
Jinyoung Huh
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/adhm.202100100

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyChemistry/Physics/Materials SciencesMarine/Freshwater BiologyMedicine/HealthOphthalmologyResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

PhET Interactive Simulations Honored with Meggers Project Award

October 30, 2025
How Protein Binding to Fraying DNA Unlocks the Mystery Behind a Global Illness

How Protein Binding to Fraying DNA Unlocks the Mystery Behind a Global Illness

October 30, 2025

UC Riverside Scientist Honored by American Federation for Aging Research

October 30, 2025

New Study Explores Crucial Hormone in Fertility Preservation for Women with Cancer

October 30, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1292 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

PhET Interactive Simulations Honored with Meggers Project Award

Survival Insights for 2021 WHO Glioma Patients

PFAS Levels Linked in Water and Southern California Adults

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.