• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, January 16, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Reactive Video playback that you control with your body

Bioengineer by Bioengineer
December 10, 2020
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Computer scientists have developed an entirely new way of interacting with video content that adapts to, and is controlled by, your body movement

IMAGE

Credit: Chris Clarke

Computer scientists have developed an entirely new way of interacting with video content that adapts to, and is controlled by, your body movement.

Fitness videos and other instructional content that aims to teach viewers new martial arts skills, exercises or yoga positions have been popular since VHS in the 80s and are abundant on Internet platforms like YouTube.

However, these traditional forms of instructional videos can lead to frustration, and even the potential for physical strain, as novice viewers, or those with limited physical mobility, struggle to keep up and mimic the movements of the expert instructors.

Now an international team of researchers from Lancaster University, Stanford University and FXPAL, have created a solution that dynamically adapts to mirror the position of the viewer’s body and matches the speed of video playback to the viewer’s movements.

The system, called ‘Reactive Video’, uses a Microsoft Kinect sensor, the latest in skeleton-tracking software, and probabilistic algorithms to identify the position, and movement of joints and limbs – such as elbows, knees, arms, hands, hips and legs. By working out the viewer’s movements it can match and compare this with the movement of the instructor in the video footage. It then estimates the time the user will take to perform a movement and adjusts playback of the video to the correct position, and pace, of the viewer.

As well as providing a more immersive experience, Reactive Video also helps users to more accurately mimic and learn new movements.

The researchers tested the system on study participants performing tai chi and radio exercises – a form of callisthenics popular in Japan. The results from the study showed that both systems could adapt to the users’ movements.

Dr Christopher Clarke, researcher from Lancaster University and co-author on the paper, said: “Since the 1980s, and especially now with the Internet, videos have helped people stay active and have offered a cheaper, more convenient alternative to gym memberships and personal trainers. However, traditional video players do have limitations – they can’t provide feedback, or adapt the pace and intensity of the physical movement to the user.

“We know performing movements in slow motion is beneficial for learning by providing opportunities to analyse your movements, and developing timing. We also know it can result in less physical strain for inexperienced users.

“For some people, keeping pace can be tricky – especially when learning something new, and for older people or those with impaired movement. Also, constantly reaching for a remote to pause, rewind and replay, can be frustrating and breaks the immersion.

“Our system overcomes these issues by having the video automatically adjust itself to play back at the user’s speed, which is less stressful and more beneficial for learning.”

Don Kimber, co-author of the research, said: “Reactive Video acts and feels like a magic mirror where as you move the video mirrors your movement, but with a cleaned-up version of the procedure, or position, performed correctly by an expert for the user to mimic and learn from.”

An additional benefit of Reactive Video, and something that sets it apart from exercise content developed for game consoles, is that it can be applied to existing footage of appropriate video content removing the need to create specially produced bespoke content.

“By using this system we can post-process existing instructional video content and enhance it to dynamically adapt to users providing a fundamental shift in how we can potentially interact with videos,” said Dr Clarke.

The team believe that with further research this kind of adaptive technology could be developed for sports and activities such as learning dance routines or honing golf swings.

###

The Reactive Video system was presented at UIST2020, a leading academic conference for the field of Human Computer Interaction.

It is detailed in the paper ‘Reactive Video: Adaptive Video Playback Based on User Motion for Supporting Physical Activity’.

The study’s authors are Christopher Clarke, of Lancaster University; Doga Cavdir of Stanford University; and Patrick Chiu, Laurent Denoue and Don Kimber, of FXPAL.

Media Contact
Ian Boydon
[email protected]

Related Journal Article

http://dx.doi.org/10.1145/3379337.3415591

Tags: Audiovisual MediaComputer ScienceExerciseMultimedia/Networking/Interface DesignResearch/DevelopmentSoftware EngineeringSports/RecreationTechnology/Engineering/Computer ScienceTheory/Design
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Better diet and glucose uptake in the brain lead to longer life in fruit flies

January 16, 2021
IMAGE

Rapid blood test identifies COVID-19 patients at high risk of severe disease

January 15, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times

January 15, 2021

Howard University professor to receive first Joseph A. Johnson Award

January 15, 2021
Next Post
IMAGE

Survey to characterize marijuana use among cancer patients

IMAGE

FEFU scientists suggest using neuromodulation to treat patients with spinal cord injuries

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    38 shares
    Share 15 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Climate ChangeChemistry/Physics/Materials SciencesBiologyInfectious/Emerging DiseasesTechnology/Engineering/Computer ScienceMedicine/HealthEcology/EnvironmentMaterialsGeneticscancerPublic HealthCell Biology

Recent Posts

  • Better diet and glucose uptake in the brain lead to longer life in fruit flies
  • Rapid blood test identifies COVID-19 patients at high risk of severe disease
  • Conductive nature in crystal structures revealed at magnification of 10 million times
  • Howard University professor to receive first Joseph A. Johnson Award
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In