• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Radioactive tadpoles reveal contamination clues

Bioengineer by Bioengineer
June 25, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Amphibian larvae help monitor environmental contamination

IMAGE

Credit: Terry [email protected]

Aiken, S.C. – Tadpoles can be used to measure the amount of radiocesium, a radioactive material, in aquatic environments, according to new research from University of Georgia scientists.

Whether from nuclear accidents, global fallout from weapons testing, or production of nuclear energy, tadpoles could be used to determine the extent and severity of radioactive contamination.

James C. Leaphart, lead investigator on the 32-day study, evaluated the rate at which the environmental pollutant radiocesium, a byproduct of nuclear production, accumulated through time in bullfrog tadpoles.

Taken from an uncontaminated wetland, the tadpoles were placed in various locations in a canal on the U.S. Department of Energy’s Savannah River Site, a former nuclear production facility. The canal received releases of radiocesium from a nearby reactor from 1954 to 1964.

“Due to the rapid accumulation of radiocesium in these tadpoles, how much they accumulated and their inability to leave aquatic systems before metamorphosis, these tadpoles are excellent indicators of the bioavailability and distribution of radiocesium in the system,” said Leaphart, graduate student at the Savannah River Ecology Laboratory and Warnell School of Forestry and Natural Resources.

According to the study results, published in the Journal of Environmental Radioactivity, bullfrog tadpoles reached what the researchers describe as maximum threshold, or the point at which their uptake of the contaminant stopped, between 11 and 14 days.

This accumulation rate was significantly faster than rates recorded for waterfowl and fish, species previously studied for uptake of the contaminant, according to Leaphart. Rates in these species varied significantly, with a range of 17 to 175 days.

James Beasley, Leaphart’s adviser and associate professor at SREL and Warnell, said how quickly a species reaches the threshold level of accumulation is vital in determining its use as a biomonitor of the contaminant.

“If it takes a long time to achieve the threshold level, factors like animal movement and changes in diet can play a role in influencing the results,” he said.

Tadpoles are more likely to reflect local contamination levels, according to Beasley. That’s because factors like movement and changes in food availability will not have as much of an impact on an individual’s exposure compared to species that may take several weeks or months to achieve maximum levels.

“Isolation is key,” Leaphart said. “Tadpoles spend the first portion of their lives in aquatic systems–canals, wetlands and ponds–foraging on plants, algae, insect larvae and sediments where radiocesium has a tendency to bind.”

Understanding radiocesium accumulation patterns in amphibians is important, the researchers said, because they have the potential to transfer contaminants within food webs as well as disperse aquatic contaminants into terrestrial ecosystems following metamorphosis.

###

Read more about the study at https://www.sciencedirect.com/science/article/pii/S0265931X18307653

Additional authors on this research include Kaitlin C. Wilms and A. Lawrence Bryan of the University of Georgia Savannah River Ecology Laboratory.

Media Contact
James C. Beasley
[email protected]

Original Source

https://news.uga.edu/radioactive-tadpoles-contamination/

Tags: BiologyEcology/EnvironmentFisheries/AquacultureMarine/Freshwater Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Comparative Genomics of UK Mycoplasma pneumoniae (2016-2024)

October 9, 2025
Gymnocypris Przewalskii Juveniles Adapt to Saline-Alkaline Stress

Gymnocypris Przewalskii Juveniles Adapt to Saline-Alkaline Stress

October 9, 2025

New Global Study Reveals How Introduced Animals Alter Island Plant Dispersal

October 8, 2025

Researchers Forge Innovative Paths in Immunotherapy for Cancer Treatment

October 8, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1148 shares
    Share 458 Tweet 287
  • New Study Reveals the Science Behind Exercise and Weight Loss

    101 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    80 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Modular eFAST Phantom Advances AI Ultrasound Triage

Key Insights on Retinoblastoma and CSF Metastasis

Parabrachial Hub Governs Persistent Pain States

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.