• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, July 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Radio waves remotely triggered the release of insulin in mice

Bioengineer by Bioengineer
November 9, 2013
in Bioengineering
Reading Time: 3 mins read
1
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers have remotely activated genes inside living animals, a proof of concept that could one day lead to medical procedures in which patients’ genes are triggered on demand. The work, in which a team used radio waves to switch on engineered insulin-producing genes in mice, is published today in Science [1].

Radio waves remotely triggered the release of insulin in mice

Jeffrey Friedman, a molecular geneticist at the Rockefeller University in New York and lead author of the study, says that in the short term, the results will lead to better tools to allow scientists to manipulate cells non-invasively. But with refinement, he thinks, clinical applications could also be possible.

Friedman and his colleagues coated iron oxide nanoparticles with antibodies that bind to a modified version of the temperature-sensitive ion channel TRPV1, which sits on the surface of cells. They injected these particles into tumours grown under the skins of mice, then used the magnetic field generated by a device similar to a miniature magnetic-resonance-imaging machine to heat the nanoparticles with low-frequency radio waves. In turn, the nanoparticles heated the ion channel to its activation temperature of 42 °C. Opening the channel allowed calcium to flow into cells, triggering secondary signals that switched on an engineered calcium-sensitive gene that produces insulin.

After 30 minutes of radio-wave exposure, the mice’s insulin levels had increased and their blood sugar levels had dropped.

Radio stars

“The great thing about this system is that radio-wave heating can penetrate deep tissue, and TRPV1 can focus that stimulus very locally to just where you have the nanoparticles,” says David Julius, a physiologist who studies TRPV1 at the University of California, San Francisco.

Friedman says that his team did not develop the method as a way of managing diabetes; insulin and blood sugar levels simply provide convenient physiological readouts for checking that the remote control is working. “There are many good treatments for diabetes that are much simpler,” he says. However, the system could potentially be engineered to produce proteins to treat other conditions.

In control experiments, the researchers showed that the radio waves heated only cells that contained nanoparticles, and the heat neither killed the specialized cells nor spread to neighbouring, unmodified ones. “Magnetic fields are a good way to develop enough energy without doing harm,” says Arnd Pralle, a biophysicist at the State University of New York at Buffalo, who has worked on stimulating neurons using nanoparticles heated by radio waves2. However, he says, more research is needed to characterize fully how the nanoparticles absorb, retain and distribute heat.

Genetic therapy

The researchers also experimented with cultured cells genetically engineered to make their own nanoparticles, and found that they could stimulate a weaker insulin secretion in these cells, too. “What I found most novel about this is there’s no need for any chemicals or small molecules to be administered,” says Ed Boyden, a neurobiologist at the Massachusetts Institute of Technology in Cambridge, who helped to pioneer a method of using fibre optics to control neural activity with light [3].

Friedman’s current method is not practical for use in the clinic because it is not ethical to grow tumours in humans, so the researchers are planning to test alternative delivery systems for the nanoparticles.

“I think people intuit that someday nanotechnology will have an impact on human medicine,” says Friedman. “We’ve extended the repertoire of what the particles can do in living animals.”

References

1. Stanley, S. A., et al. Science 336, 604–608 (2012).
2. Huang, H., Delikanli, S., Zeng, H., Ferkey, D. M. & Pralle, A. Nature Nanotechnol. 5, 602–606 (2010).
3. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Nature Neurosci. 8, 1263–1268 (2005).

Story Source:

The above story is based on materials provided by Nature, Helen Shen.

Share24Tweet15Share4ShareShareShare3

Related Posts

blank

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023
blank

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    62 shares
    Share 25 Tweet 16
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.