• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, April 17, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Purdue scientists use malaria expertise to track COVID-19 variants

Bioengineer by Bioengineer
April 8, 2021
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Purdue University photo/Rebecca McElhoe

WEST LAFAYETTE, Ind. — Scientists have been using genetics to track diseases for decades. Now, a team at Purdue University that typically tracks malaria spread in Southern and Central Africa is using its expertise to track COVID-19 in Indiana.

Giovanna Carpi’s lab studies the genomics of infectious diseases to better understand how they spread. An assistant professor of biological sciences, she focuses her research primarily on malaria. With the onset of the pandemic, her lab pivoted to study the genomic epidemiology of SARS-CoV-2, the novel coronavirus that causes COVID-19, including tracking variants.

Tracking variants of diseases – whether they are bacterial like tuberculosis, viral like SARS-CoV-2 or parasitic like malaria – helps scientists understand how they travel in a community, how they mutate and adapt, and how vaccines and other mitigation strategies are working.

“We study genomic epidemiology, large-scale genomic studies of communicable disease, and our lab is investing in new sequencing and informatic technologies to study the genomes of infectious diseases to understand transmission,” Carpi said. “This allows us to do sequencing in real time, to conduct genomic surveillance, which has transformed our understanding of the spread of diseases.”

Carpi and her lab are part of the Purdue Institute of Inflammation, Immunology and Infectious Disease, which works across disciplines to advance the treatment and understanding of infectious diseases, cancer and chronic inflammatory conditions. Carpi studies the way diseases spread as well as how pathogens evolve as they adapt within, and move among, infected individuals. Currently, her work focuses on malaria, especially in countries like Zambia, which is working to eliminate malaria. In situations where malaria cases are rare, it is even more important to understand how the pathogen is introduced and persists through a population, to better prevent sustained transmission. That important work has not been put on hold, but since January, the novel coronavirus has become another priority for her lab.

SARS-CoV-2 and malaria have very little in common with each other. Malaria is a protozoan, a parasite carried and transmitted by certain species of mosquitoes. SARS-CoV-2 is a virus, spread mainly by person-to-person contact and through tiny droplets of bodily fluids in the air. But though they are different diseases, both on the microscopic level and in how they are spread, the methods scientists use to study them are similar.

“They are very different systems, but you use the same technology to study them both,” Carpi said. “The sequencing procedures and the computations are very similar.”

In fact, the novel coronavirus may be easier to study than malaria because its genome is much smaller, simpler and easier to monitor. Carpi’s work on malaria, and the equipment and expertise in her lab, puts her in a prime position, along with Purdue’s Animal Disease Diagnostic Laboratory, to be able to track COVID-19 variants.

“We do this kind of tracking all the time for malaria,” Carpi said. “We switched quickly and were able to adapt to sequencing SARS-CoV-2 in December 2020 as variants of concern were introduced and started spreading in the United States. We had to scale up. We are the only lab in Indiana – along with our partners at the Animal Disease Diagnostic Laboratory – to be able to switch overnight to studying the SARS-CoV-2 genome. I have an amazing lab team, and we have been able to adapt with a very fast turnaround time.”

Tracking the genetics of a virus, or any disease, gives scientists insights into how it is moving through a community. Patients with similar variants – with viruses with similar mutations – probably got the virus from the same place or from each other. Novel variants can indicate new viruses coming into a community from elsewhere. Comparing genomics also can help scientists understand how the variant is responding to vaccinations, as well as other anti-infectious measures including masks, quarantines, social distancing, intensive cleaning and other procedures.

Since January, Carpi’s lab has sequenced and studied about 200 complete viral genomes, including variants that can be screened by testing. She is tracking the novel coronavirus in the Purdue community, working with the Protect Purdue Health Center, as well as throughout the state of Indiana. The information she gathers helps inform policymakers, ensuring that city, state and university leaders have the best and most accurate, up-to-date information possible.

“The work my lab is doing has been critical,” Carpi said. “The Indiana state health department has sent us samples because we can do the work for them faster than the CDC labs can.”

###

About the Purdue Institute of Inflammation, Immunology and Infectious Disease

The Purdue Institute of Inflammation, Immunology and Infectious Disease leverages the significant diversity of life sciences, physical sciences and engineering on campus to invent and integrate basic immunologic advances, new diagnostics, probe basic biological and inflammatory processes and to develop and commercialize novel intervention methods to control an array of chronic inflammatory conditions, cancer and infectious diseases.

About Purdue University

Purdue University is a top public research institution developing practical solutions to today’s toughest challenges. Ranked the No. 5 Most Innovative University in the United States by U.S. News & World Report, Purdue delivers world-changing research and out-of-this-world discovery. Committed to hands-on and online, real-world learning, Purdue offers a transformative education to all. Committed to affordability and accessibility, Purdue has frozen tuition and most fees at 2012-13 levels, enabling more students than ever to graduate debt-free. See how Purdue never stops in the persistent pursuit of the next giant leap at https://purdue.edu/.

Media Contact
Brittany Steff
[email protected]

Original Source

https://www.purdue.edu/newsroom/releases/2021/Q2/purdue-scientists-use-malaria-expertise-to-track-covid-19-variants,-inform-policymakers-on-virus-spread.html

Tags: EpidemiologyGeneticsInfectious/Emerging DiseasesMedicine/HealthPublic Health
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

University of Colorado inter-campus collaboration wins R01 award for salivary gland cancer

April 16, 2021
IMAGE

New understanding of the deleterious immune response in rheumatoid arthritis

April 16, 2021

Scientists call for climate projections as part of more robust biodiversity conservation

April 16, 2021

Quality and quantity of enrichments influence well-being of aquaculture fishes

April 16, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    60 shares
    Share 24 Tweet 15
  • Terahertz accelerates beyond 5G towards 6G

    852 shares
    Share 341 Tweet 213
  • A sturdier spike protein explains the faster spread of coronavirus variants

    44 shares
    Share 18 Tweet 11
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

University of WashingtonVaccineWeather/StormsVirusVirologyWeaponryVaccinesUrbanizationVehiclesUrogenital SystemZoology/Veterinary ScienceViolence/Criminals

Recent Posts

  • New amphibious centipede species discovered in Okinawa and Taiwan
  • USU researchers develop power converter for long-distance, underwater electric grids
  • The fate of the planet
  • The future of particle accelerators is here
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In