• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, December 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Promising path found for COVID-19 therapeutics

Bioengineer by Bioengineer
June 11, 2020
in Health
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Team of UGA scientists building on previous SARS research

IMAGE

Credit: UGA

Athens, Ga. – A team of researchers at the University of Georgia has successfully demonstrated that a set of drug-like small molecules can block the activity of a key SARS-CoV-2 protein–providing a promising path for new COVID-19 therapeutics.

Led by Scott Pegan, director of UGA’s Center for Drug Discovery, the team was the first to evaluate the SARS-CoV-2 protein PLpro, known to be essential in other coronaviruses for both its replication and its ability to suppress host immune function.

“The PLpro from SARS-CoV-2 behaved differently than its predecessor that caused the SARS outbreak in 2003. Specifically, our data suggests that the SARS-CoV-2 PLpro is less effective at its immune suppression roles,” said Pegan, professor of pharmaceutical and biomedical sciences in the College of Pharmacy. “This may be one of the underlying reasons why the current virus is not as fatal as the virus from the 2003 outbreak.”

The COVID-19 pandemic has affected more lives globally than the SARS outbreak of 2002-03, but its mortality rate is lower based on available numbers in early June. After the SARS outbreak, the World Health Organization reported 8,098 cases and 774 deaths–a mortality rate of nearly 10%. According to Johns Hopkins University’s COVID-19 dashboard on June 3, there were 6,435,453 confirmed cases globally and 382,093 deaths–a mortality rate of nearly 6%.

From an evolutionary standpoint, it’s not good for a virus to be fatal for the host, and SARS in 2003 was particularly lethal, according to Pegan.

“The COVID-19 virus infects, but people don’t run a fever before they are contagious, so there’s a lot of focus on how virulence factors like PLpro have been modified by nature to give the virus a better chance, from its perspective, to coexist with us,” he said. “Obviously we would not like for it to coexist, but COVID-19 seems to have solved the Goldilocks paradox of being in the right place at the right time and with the right infection level.”

Pegan collaborated with UGA scientists David Crich, Ralph Tripp and Brian Cummings to explore inhibitors designed to knock out PLpro and stop replication of the virus. They began with a series of compounds that were discovered 12 years ago and shown to be effective against SARS, but development was cut short since SARS had not reappeared.

“Obviously now we see the current coronavirus is probably going to be with us for a while–if not this one, then probably other types of coronaviruses,” Pegan said. “These compounds are a good starting point for therapeutic development. They have all the properties you would typically want to find in a drug, and they have a history of not being considered toxic.”

These compounds, naphthalene-based PLpro inhibitors, are shown to be effective at halting SARS-CoV-2 PLpro activity as well as replication. They offer a potential rapid development path to generating PLpro-targeted therapeutics for use against SARS-CoV-2.

“The kind of small molecules that we’re developing are some of the first that are specifically designed for this coronavirus protease,” Pegan said. “Up till now, most therapeutic work against SARS has targeted another virulence factor, C3Lpro. This is a great start with a different target. Our hope is that we can turn this into a starting point for creating a drug that we can get in front of the Food and Drug Administration.”

Four UGA labs, including students, brought their expertise to the project. Pegan’s lab used modeling techniques to locate the differences between PLpro in the 2003 outbreak and the current outbreak, revealing the comparative weakness of the SARS-CoV-2 PLpro and suggesting potential inhibitors for testing.

Medicinal chemist David Crich, professor and Georgia Research Alliance and David Chu Eminent Scholar in Drug Design, provided guidance on understanding the attributes of the inhibitors and is working to synthesize new compounds with improved properties.

Testing of compounds against the virus was led by Ralph Tripp, an expert in respiratory viruses and related diseases who is Georgia Research Alliance Eminent Scholar of Vaccine and Therapeutic Studies and professor of infectious diseases in the College of Veterinary Medicine.

Brian Cummings, professor and head of pharmaceutical and biomedical sciences, covered toxicology, ensuring that the compounds tested killed their intended targets without causing toxic effects for the host.

###

The team’s paper appears online in the journal ACS Infectious Diseases, published by the American Chemical Society. In addition to Pegan, Crich and Tripp, co-authors include Robert Jeff Hogan, professor of veterinary biosciences and diagnostic imaging; Jackelyn Murray, research scientist; graduate students Brendan Freitas and Ian Durie; and undergraduates Jaron Longo and Holden Miller.

Media Contact
Scott Pegan
[email protected]

Original Source

https://news.uga.edu/promising-path-found-covid-19-therapeutics/

Related Journal Article

http://dx.doi.org/10.1021/acsinfecdis.0c00168

Tags: Infectious/Emerging DiseasesMedicine/HealthMicrobiologyPharmaceutical ChemistryPharmaceutical ScienceVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

Assessing the K-NHSPSC: Korean Patient Safety Culture Insights

December 20, 2025

Spot Urine CA 19-9: New Insights in Pediatric Hydronephrosis

December 20, 2025

Discharge Choices for Elderly Surgical Patients Explored

December 20, 2025

Health Needs Influence Care Utilization in Women Veterans

December 20, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing the K-NHSPSC: Korean Patient Safety Culture Insights

Spot Urine CA 19-9: New Insights in Pediatric Hydronephrosis

Discharge Choices for Elderly Surgical Patients Explored

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.