• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Promising path found for COVID-19 therapeutics

Bioengineer by Bioengineer
June 11, 2020
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Team of UGA scientists building on previous SARS research

IMAGE

Credit: UGA

Athens, Ga. – A team of researchers at the University of Georgia has successfully demonstrated that a set of drug-like small molecules can block the activity of a key SARS-CoV-2 protein–providing a promising path for new COVID-19 therapeutics.

Led by Scott Pegan, director of UGA’s Center for Drug Discovery, the team was the first to evaluate the SARS-CoV-2 protein PLpro, known to be essential in other coronaviruses for both its replication and its ability to suppress host immune function.

“The PLpro from SARS-CoV-2 behaved differently than its predecessor that caused the SARS outbreak in 2003. Specifically, our data suggests that the SARS-CoV-2 PLpro is less effective at its immune suppression roles,” said Pegan, professor of pharmaceutical and biomedical sciences in the College of Pharmacy. “This may be one of the underlying reasons why the current virus is not as fatal as the virus from the 2003 outbreak.”

The COVID-19 pandemic has affected more lives globally than the SARS outbreak of 2002-03, but its mortality rate is lower based on available numbers in early June. After the SARS outbreak, the World Health Organization reported 8,098 cases and 774 deaths–a mortality rate of nearly 10%. According to Johns Hopkins University’s COVID-19 dashboard on June 3, there were 6,435,453 confirmed cases globally and 382,093 deaths–a mortality rate of nearly 6%.

From an evolutionary standpoint, it’s not good for a virus to be fatal for the host, and SARS in 2003 was particularly lethal, according to Pegan.

“The COVID-19 virus infects, but people don’t run a fever before they are contagious, so there’s a lot of focus on how virulence factors like PLpro have been modified by nature to give the virus a better chance, from its perspective, to coexist with us,” he said. “Obviously we would not like for it to coexist, but COVID-19 seems to have solved the Goldilocks paradox of being in the right place at the right time and with the right infection level.”

Pegan collaborated with UGA scientists David Crich, Ralph Tripp and Brian Cummings to explore inhibitors designed to knock out PLpro and stop replication of the virus. They began with a series of compounds that were discovered 12 years ago and shown to be effective against SARS, but development was cut short since SARS had not reappeared.

“Obviously now we see the current coronavirus is probably going to be with us for a while–if not this one, then probably other types of coronaviruses,” Pegan said. “These compounds are a good starting point for therapeutic development. They have all the properties you would typically want to find in a drug, and they have a history of not being considered toxic.”

These compounds, naphthalene-based PLpro inhibitors, are shown to be effective at halting SARS-CoV-2 PLpro activity as well as replication. They offer a potential rapid development path to generating PLpro-targeted therapeutics for use against SARS-CoV-2.

“The kind of small molecules that we’re developing are some of the first that are specifically designed for this coronavirus protease,” Pegan said. “Up till now, most therapeutic work against SARS has targeted another virulence factor, C3Lpro. This is a great start with a different target. Our hope is that we can turn this into a starting point for creating a drug that we can get in front of the Food and Drug Administration.”

Four UGA labs, including students, brought their expertise to the project. Pegan’s lab used modeling techniques to locate the differences between PLpro in the 2003 outbreak and the current outbreak, revealing the comparative weakness of the SARS-CoV-2 PLpro and suggesting potential inhibitors for testing.

Medicinal chemist David Crich, professor and Georgia Research Alliance and David Chu Eminent Scholar in Drug Design, provided guidance on understanding the attributes of the inhibitors and is working to synthesize new compounds with improved properties.

Testing of compounds against the virus was led by Ralph Tripp, an expert in respiratory viruses and related diseases who is Georgia Research Alliance Eminent Scholar of Vaccine and Therapeutic Studies and professor of infectious diseases in the College of Veterinary Medicine.

Brian Cummings, professor and head of pharmaceutical and biomedical sciences, covered toxicology, ensuring that the compounds tested killed their intended targets without causing toxic effects for the host.

###

The team’s paper appears online in the journal ACS Infectious Diseases, published by the American Chemical Society. In addition to Pegan, Crich and Tripp, co-authors include Robert Jeff Hogan, professor of veterinary biosciences and diagnostic imaging; Jackelyn Murray, research scientist; graduate students Brendan Freitas and Ian Durie; and undergraduates Jaron Longo and Holden Miller.

Media Contact
Scott Pegan
[email protected]

Original Source

https://news.uga.edu/promising-path-found-covid-19-therapeutics/

Related Journal Article

http://dx.doi.org/10.1021/acsinfecdis.0c00168

Tags: Infectious/Emerging DiseasesMedicine/HealthMicrobiologyPharmaceutical ChemistryPharmaceutical ScienceVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Immune System’s Role in Clearing Senescent Cells

August 15, 2025
blank

Breakthrough Monoclonal Antibody Offers New Hope Against Deadly Sepsis

August 15, 2025

Higher Frontal Dopamine Binding in PD with RBD

August 14, 2025

Aging Turns Immune System from Healer to Saboteur

August 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Immune System’s Role in Clearing Senescent Cells

FSU Chemists Pioneer Advanced X-Ray Material, Revolutionizing Thin Film Imaging

Texas A&M Researchers Leverage AI to Identify Critical Power Outage Hotspots Across America

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.