• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Pressure suppresses carrier trapping in 2D halide perovskite

Bioengineer by Bioengineer
July 17, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Songhao Guo

Two-dimensional (2D) organic-inorganic halide perovskites are emerging materials for photovoltaic and optoelectronic applications due to their unique physical properties and a high degree of tunability. Despite impressive advances, challenges remain, including unsatisfactory performance and a vague understanding of their structure-property relationships. Addressing these challenges requires more suitable material systems and advanced in situ characterization methods.

An international team led by Dr. Xujie Lü and Dr. Wenge Yang from the Center for High Pressure Science and Technology Advanced Research (HPSTAR) and Prof. Song Jin from the University of Wisconsin-Madison discovered that lattice compression under a mild pressure considerably suppresses the carrier trapping of a 2D perovskite (HA)2(GA)Pb2I7, leading to significantly enhanced emission. Intriguingly, a new phase obtained after pressure-treatment possesses a higher crystallographic symmetry, fewer trap states, and enhanced PL intensity. The findings were recently published in Angew. Chem. Int. Ed.

Lattice compression through hydrostatic pressure is an effective way to tune the structural and optical properties of two-dimensional (2D) halide perovskites – a new class of emerging materials for photovoltaic and light-emitting applications. However, few examples exhibit improved photoluminescence (PL) performance of 2D perovskites upon compression, and the structure-property relationship remains unclear.

In this work, the team used pressure to modulate a recently developed 2D perovskite (HA)2(GA)Pb2I7, whose structure features an enormous cage previously unattainable. This affords a rare opportunity to understand the structure-property relationship and explore emergent phenomena. Impressively, a remarkable 12-fold PL enhancement was achieved under a mild pressure within 1.6 GPa. The underlying mechanism was systematically investigated by in situ structural, spectroscopic, and theoretical analyses. The lattice contraction leads to phonon hardening that considerably reduces the exciton-phonon interaction and, thus, enlarges the potential barrier for carrier trapping. Therefore, the photogenerated carriers can barely form the trapped states, and the nonradiative recombination pathway is primarily blocked, resulting in an enhanced emission from the free excitons.

Interestingly, for the first time, they revealed an irreversible and anomalous process during decompression, obtaining a yellow, non-luminescent, amorphous phase of (HA)2(GA)Pb2I7 with a higher bandgap. The emission can be triggered and dramatically increased under laser irradiation when the pressure was released to 1.5 GPa, accompanied by a color change from yellow to orange. Based on this observation, they used the laser beam to draw an “HP” pattern on the yellow sample surface in the DAC chamber. When the pressure was released entirely, the amorphous yellow phase could spontaneously transform into a new orange phase with enhanced PL by over 100% compared with the pristine sample. Further structural characterization and spectra analysis reveals that the new phase possesses a higher crystallographic symmetry and less carrier trapping.

By using pressure to engineer the highly-distorted 2D halide perovskite, this work provides fresh insights into the structure-property relationships of perovskites and also enables the discovery of new high-performance materials through pressure-induced phase transitions.

###

Media Contact
Haini Dong
[email protected]

Original Source

http://hpstar.ac.cn/contents/27/11470.html

Related Journal Article

http://dx.doi.org/10.1002/anie.202001635

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Industrial Engineering/ChemistryMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

Dual-Pathway Synthesis Builds Non-Adjacent Stereocenters

Dual-Pathway Synthesis Builds Non-Adjacent Stereocenters

November 13, 2025
Breakthrough “Ultra-Mild” Sequencing Technique Overcomes Key Limitations in Cancer DNA Methylation Analysis

Breakthrough “Ultra-Mild” Sequencing Technique Overcomes Key Limitations in Cancer DNA Methylation Analysis

November 13, 2025

Groundbreaking High-Precision Measurement of Potential Dynamics Achieved in Reactor-Grade Fusion Plasma

November 13, 2025

Stellar siblings: The Pleiades emerge from a colossal star-forming event

November 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    141 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1306 shares
    Share 522 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rare Genetic Variants Linked to ADHD Risk

Enhancing Teamwork in Healthcare: A Visual Framework

Climate Change Reshapes Global Carbon Sinks

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.