• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, April 10, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Preclinical study of COVID-19 vaccine candidate shows potent T-cell responses

Bioengineer by Bioengineer
August 25, 2020
in Health
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

These potent CD4+ and CD8+ T-cell responses were stimulated in the lungs following a single intranasal administration

IMAGE

Credit: UAB

BIRMINGHAM, Ala. – Preclinical studies of a COVID-19 vaccine candidate at the University of Alabama at Birmingham show positive results that appear to distinguish this vaccine candidate from other vaccine candidates that are currently in advanced stages of clinical development, the Maryland-based Altimmune Inc. announced today.

Unlike the other candidates that are administered by an intramuscular shot, the Altimmune candidate, AdCOVID, is administered by a single intranasal spray. In animal models at UAB, that single dose resulted in a potent T-cell response at the mucus layer of the lungs, including killer CD8+ T-cells, which can recognize and kill virally infected cells. Recent reports have suggested the importance of T-cell responses for long-term protection from COVID-19.

“The mucosal T-cell response in the respiratory tract is believed to be dependent on the intranasal route of administration, and we believe it has the potential to provide additional protection against COVID-19,” Altimmune announced today in a press release. “The induction of a mucosal T-cell response in the lungs has not been shown, to date, with the intramuscularly administered COVID-19 vaccine candidates that are currently in the advanced stages of clinical development.”

This news follows the July announcement by Altimmune that the vaccine candidate — tested as an intranasal spray in mice by UAB researchers — prompted a mouse immune response in the blood that was strong enough to neutralize the COVID-19 virus, as well as a potent immune response in the respiratory tract — the site where the COVID-19 virus first infects. The vaccine candidate creates an immune response against the COVID-19 virus spike protein that helps the virus bind to a human cell to start infection.

“The property that sets AdCOVID apart is that it has been shown preclinically to induce a potent T-cell and IgA antibody response in the lungs, in addition to the systemic neutralizing antibody response induced by intramuscular vaccine candidates,” said Frances Lund, Ph.D., the Charles H. McCauley Professor and chair of the UAB Department of Microbiology and lead investigator for preclinical testing of the AdCOVID vaccine candidates. “This local mucosal immune response is an important addition to the systemic immune response and has the potential to block infection and prevent transmission.”

In addition to potent immunogenicity after a single dose administration, AdCOVID is expected to show further benefits in terms of vaccine distribution and administration. Intranasal dosing provides AdCOVID with the potential to be administered rapidly and without the need for needles, syringes or trained health care personnel. Also, the expected room temperature stability of AdCOVID may allow broad distribution of the vaccine without the need for expensive cold-chain logistics, such as refrigeration or freezing.

Altimmune is currently manufacturing AdCOVID for a human Phase 1 safety and immunogenicity study, expected to begin in the fourth quarter of 2020.

The Altimmune-UAB collaboration was announced March 30, and Lund made that work the highest priority for her group, which included six UAB labs, all working under UAB COVID-19 safety protocols. “The goal,” she said at the time, “is to get the data to Altimmune as rapidly as possible, so they will use the information gained from the preclinical study to design their clinical trial in people.”

In detail, Altimmune’s announcement today said that AdCOVID showed potent stimulation of antigen-specific CD4+ and CD8+ T-cells in the lungs of CD-1 mice as early as 10 days following a single intranasal vaccination, with responses strongly biased toward CD8+ T-cells. Both CD4+ and CD8+ T-cells displayed phenotypes consistent with the Th1-type immune response that is important for control of viral infection.

###

Altimmune is a clinical-stage biopharmaceutical company, based in Gaithersburg, Maryland.

UAB has extensive experience in conducting clinical studies of vaccines and has participated in studies sponsored by the Vaccine Evaluation and Trial Unit, part of the National Institute of Allergy and Infectious Diseases at the National Institutes of Health.

About UAB

Known for its innovative and interdisciplinary approach to education at both the graduate and undergraduate levels, the University of Alabama at Birmingham, a part of the University of Alabama System, is an internationally renowned research university and academic medical center, as well as Alabama’s largest employer, with some 23,000 employees, and has an annual economic impact exceeding $7 billion on the state. The pillars of UAB’s mission include education, research, innovation and economic development, community engagement, and patient care. Learn more at http://www.uab.edu.

EDITOR’S NOTE: The University of Alabama at Birmingham is one of three doctoral research universities in the University of Alabama System. In your first reference to our institution, please use University of Alabama at Birmingham and UAB on subsequent references.

FACEBOOK: http://www.facebook.com/UAB.edu
TEXT: http://www.uab.edu/news
TWEETS: http://www.twitter.com/uabnews

VIDEO: http://www.youtube.com/uabnews

Media Contact
Jeff Hansen
[email protected]

Tags: Clinical TrialsImmunology/Allergies/AsthmaInfectious/Emerging DiseasesInternal MedicineMedicine/HealthPulmonary/Respiratory MedicineVaccines
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Level of chromosomal abnormality in lung cancer may predict immunotherapy response

April 10, 2021
IMAGE

Mutant KRAS and p53 cooperate to drive pancreatic cancer metastasis

April 10, 2021

UNT Health Science Center leads health literacy outreach in seven states

April 9, 2021

Brain disease transmitted by tick bites may be treatable

April 9, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    851 shares
    Share 340 Tweet 213
  • Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    59 shares
    Share 24 Tweet 15
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    55 shares
    Share 22 Tweet 14
  • A sturdier spike protein explains the faster spread of coronavirus variants

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

GeneticsCell BiologyBiologyPublic HealthMedicine/HealthcancerInfectious/Emerging DiseasesMaterialsTechnology/Engineering/Computer ScienceClimate ChangeChemistry/Physics/Materials SciencesEcology/Environment

Recent Posts

  • Men with low health literacy less likely to choose active surveillance for prostate cancer after tumor profiling
  • Level of chromosomal abnormality in lung cancer may predict immunotherapy response
  • Mutant KRAS and p53 cooperate to drive pancreatic cancer metastasis
  • Better metric for thermoelectric materials means better design strategies
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In