• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, October 3, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Pathogens get comfy in designer goo

Bioengineer by Bioengineer
July 22, 2021
in Health
Reading Time: 6 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Rice, Baylor labs use custom hydrogels to mimic insides of intestines, study infectious bacteria

IMAGE

Credit: Rice University/Baylor College of Medicine

HOUSTON — (July 22, 2021) — Researchers who want bacteria to feel right at home in the laboratory have put out a new welcome mat.

Rice University bioengineers and Baylor College of Medicine scientists looking for a better way to mimic intestinal infections that cause diarrhea and other diseases have built and tested a set of hydrogel-based platforms to see if they could make both transplanted cells and bacteria comfy.

As a mechanical model of intestinal environments, the lab’s soft, medium and hard polyethylene glycol (PEG) hydrogels were far more welcoming to the cells that normally line the gut than the glass and plastic usually used by laboratories. These cells can then host bacteria like Escherichia coli that are sometimes pathogenic. The ability to study their dynamics under realistic conditions can help scientists find treatments for the maladies they cause.

The researchers found strong correlation between the stiffness of hydrogels, which mimic intestinal mucus, and how well a diarrhea-causing strain of E. coli adhered to and aggregated atop the epithelial cells that normally line the intestines. They reported that softer hydrogels promoted “significantly greater bacterial adhesion,” which they attribute to mucus and other extracellular matrix components expressed by the cells.

The study led by bioengineer Jane Grande-Allen of Rice’s Brown School of Engineering and Anthony Maresso at Baylor, which appears in Acta Biomaterialia, proved the gels’ value in experiments involving the soft interface between organs and microbial or bacterial pathogens.

The Estes lab at Baylor built its model cultures using enteroids, constructs of intestinal cell cultures that scientists use to understand how epithelial cells respond to infectious invaders. Enteroids can incorporate a variety of cells found in the gut, but before Rice’s hydrogels, they were grown on platforms that did not easily mimic the squishy tissues in host bodies.

“Tissue culture plastic is the standard for growing cells, but it’s a really artificial environment because it’s so rigid,” Grande-Allen said. “It’s hard plastic, like a glass slide. Certain cells grow just fine on tissue culture plastic, but they’re not consistently easy to infect that way.

“This is the case with the cells in the jejunum, where most nutrient absorption happens in the small intestine,” she said. “Our collaborators obtain human intestinal tissues from biopsies and bariatric surgeries to make enteroids, but the enteroids derived from jejunal cells had been difficult to infect with this pathogenic E. coli.”

In Grande-Allen’s lab, enteroid cells were grown on top of the hydrogel substrates. After a time, the researchers in Maresso’s lab added bacteria and found that the enteric E. coli clustered easily on the intestinal cells grown on the medium and soft gels, but not on glass slides or stiff hydrogels.

All of the hydrogel-cultured enteroids showed significant enrichment of gene and signaling pathways related to epithelial differentiation, cell junctions and adhesions, extracellular matrix and mucins compared to those cultured on rigid surfaces.

The Rice lab reported its successful development of hydrogels for enteroid use in a previous paper with the Baylor researchers. “Getting the cells to adhere and spread on the hydrogels was tricky, which is why we wrote the methods paper,” Grande-Allen said.

“But with that coating approach established, the hydrogel underneath could have a range of different stiffnesses,” she said. “That was the variable in the new paper, and we were floored to find the effect that it had on bacterial adhesion.

“In general, stiffness and its effect on bacteria is rather understudied,” Grande-Allen said. “Others have reported that bacteria grown directly on hydrogels prefer stiffer gels, and that finding will help to study biofilms. But here, our focus was trying to mimic the infectious disease process that actually happens in the gut, so we needed to involve the epithelial cells.”

Grande-Allen said the hydrogels will be used to study other types of diarrhea-causing bacteria, including patient-specific cultivates, but in the near term said her lab will look at the combined effect of stiffness and shear stress on bacterial adhesion to enteroids.

###

Former Rice postdoctoral fellows Ganesh Swaminathan, now a researcher at Novartis, and Nabiollah Kamyabi, now at 10x Genomics, are lead authors of the paper. Co-authors are research assistant Hannah Carter, postdoctoral associate Anubama Rajan, staff scientist Umesh Karandikar, graduate student Zachary Criss, associate professor Noah Shroyer, analyst Matthew Robertson, associate professor Cristian Coarfa and distinguished service professor Mary Estes of Baylor; and alumni Chenlin Huang, Tate Shannon and Madeleine Tadros of Rice. Maresso is a professor of molecular virology and microbiology. Grande-Allen is the Isabel C. Cameron Professor of Bioengineering.

The National Institutes of Health, the Cancer Prevention and Research Initiative of Texas, the NIH-supported Texas Medical Center Digestive Diseases Center, the Advanced Technology Core Laboratories at Baylor, the Dan L. Duncan Comprehensive Cancer Center and the Baylor Office of Research supported the research.

Read the abstract at https://www.sciencedirect.com/science/article/pii/S1742706121004621.

This news release can be found online at https://news-network.rice.edu/news/2021/07/22/pathogens-get-comfy-in-designer-goo/.

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:

Human Intestinal Enteroids: a New Model to Study Human Rotavirus Infection, Host Restriction and Pathophysiology: https://journals.asm.org/doi/10.1128/JVI.01930-15

Protein-Functionalized Poly(ethylene glycol) Hydrogels as Scaffolds for Monolayer Organoid Culture: https://www.liebertpub.com/doi/10.1089/ten.tec.2020.0306

Simple bioreactor makes ‘gut check’ more practical: http://news.rice.edu/2021/01/07/simple-bioreactor-makes-gut-check-more-practical-2/

Grande-Allen Integrative Matrix Mechanics Lab: http://grandegroup.blogs.rice.edu

Anthony Maresso bio: https://www.bcm.edu/people-search/anthony-maresso-26050

Rice Department of Bioengineering: https://bioengineering.rice.edu

George R. Brown School of Engineering: https://engineering.rice.edu

Images for download:

https://news-network.rice.edu/news/files/2021/07/0726_STIFF-1-WEB.jpg

Rice University bioengineers have developed hydrogels of various stiffness to see if they are more hospitable to intestinal cells and bacteria in lab experiments. The hydrogels proved far better at supporting cultures than traditional glass and plastic slides. (Credit: Rice University/Baylor College of Medicine)

https://news-network.rice.edu/news/files/2021/07/0726_STIFF-2-WEB.jpg

A comparison of E. coli cultures on enteroids grown on a selection of surfaces shows hydrogels developed at Rice University are effective mimics of intestinal environments for lab experiments. (Credit: Rice University/Baylor College of Medicine)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,978 undergraduates and 3,192 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 1 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.

Media Contact
Jeff Falk
[email protected]

Original Source

https://news-network.rice.edu/news/2021/07/22/pathogens-get-comfy-in-designer-goo/

Related Journal Article

http://dx.doi.org/10.1016/j.actbio.2021.07.024

Tags: Biomedical/Environmental/Chemical EngineeringCell BiologyGastroenterologyInfectious/Emerging DiseasesInternal MedicineMedicine/Health
Share13Tweet8Share2ShareShareShare2

Related Posts

Professor Yuming Guo

How floods kill, long after the water has gone – global decade-long study

October 3, 2023
Elizabeth Jacobs

Study uncovers reasons Americans did not get booster vaccines

October 2, 2023

Gut bacteria found in wild wolves may be key to improving domestic dogs’ health

October 2, 2023

Study reveals high accuracy of MR-guided radiotherapy for intracranial itereotactic radiosurgery

October 2, 2023
Please login to join discussion

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Improved mangrove conservation could yield cash, carbon, coastal benefits

How floods kill, long after the water has gone – global decade-long study

Host genetics helps explain childhood cancer survivors’ mortality risk from second cancers

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In