• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, August 12, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Particles with ‘eyes’ allow a closer look at rotational dynamics

Bioengineer by Bioengineer
June 16, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Institute of Industrial Science, the University of Tokyo

Tokyo, Japan – Colloids–mixtures of particles made from one substance, dispersed in another substance–crop up in numerous areas of everyday life, including cosmetics, food and dyes, and form important systems within our bodies. Understanding the behavior of colloids therefore has wide-ranging implications, yet investigating the rotation of spherical particles has been challenging. Now, an international team including researchers from The University of Tokyo Institute of Industrial Science has created particles with an off-center core or “eye” that can be tracked using microscopy. Their findings are published in Physical Review X.

Particles suspended in a liquid move from one place to another as a result of Brownian motion, which can be easily detected with a microscope. However, these particles also rotate, which is much more difficult to see if they are spherical.

The researchers overcame this by creating particles made from two different colors of the same material. The core sphere–which they call the eye–is set off-center at the surface of the particle. It provides a point that can be followed under a microscope to determine the orientation changes as the particle rotates.

“The rotation of a colloidal particle tells us about the surrounding hydrodynamics–the motion of the suspending liquid–and the contact forces, such as friction. However, to get the full picture in a dense suspension, all of the particles must be tracked at once,” explains study corresponding author Professor Hajime Tanaka. “As well as providing a point to track over time, the density and refractive index of our particles can be matched so that the necessary 3D images can be acquired.”

By tracking a dense suspension of charged particles forming a colloidal crystal–which has an ordered arrangement of particles–it was found that the rotation of neighboring spheres was coupled and moved in opposite directions, like meshed gears.

In addition, a system with uncharged particles showed that there was a relationship between local crystallinity–the ordering in the immediate surroundings–and the rotational diffusivity, which describes the process of the orientation regaining equilibrium.

The researchers also observed “stick-slip” rotational motion between particles that make contact, where a large neighbor could stop the motion of a particle through friction.

“Our system has provided much-needed insight into hydrodynamic and frictional coupling in very dense colloids,” says other corresponding author Professor Roel Dullens. “We expect our findings to have a significant impact on the design of industrial processes involving colloids, as well as on the understanding of biological processes.”

###

The article, “Particle-level visualization of hydrodynamic and frictional couplings in dense suspensions of spherical colloids”, was published in Physical Review X at DOI: 10.1103/PhysRevX.11.021056.

About Institute of Industrial Science (IIS), the University of Tokyo

Institute of Industrial Science (IIS), the University of Tokyo is one of the largest university-attached research institutes in Japan.

More than 120 research laboratories, each headed by a faculty member, comprise IIS, with more than 1,000 members including approximately 300 staff and 700 students actively engaged in education and research. Our activities cover almost all the areas of engineering disciplines. Since its foundation in 1949, IIS has worked to bridge the huge gaps that exist between academic disciplines and realworld applications.

Media Contact
Hajime Tanaka
[email protected]

Original Source

https://www.iis.u-tokyo.ac.jp/en/news/3581/

Related Journal Article

http://dx.doi.org/10.1103/PhysRevX.11.021056

Tags: Biomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsMolecular PhysicsNanotechnology/MicromachinesPolymer ChemistryResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

SEM micrograph of a cuboid parameter sweep comprising 10 x 10 elements fabricated via TPP from the photoresist IP-Q.

Overcoming a major manufacturing constraint

August 12, 2022
Bose-Einstein condensate

A simple way of sculpting matter into complex shapes

August 12, 2022

UT researchers receive $2.75 million grant to investigate movement of amphibian pathogens in wildlife trade networks

August 12, 2022

Princeton’s Sorensen lab develops concise synthesis of pleurotin

August 12, 2022
Please login to join discussion

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Zoology/Veterinary ScienceVirologyUniversity of WashingtonVirusUrbanizationUrogenital SystemWeaponryVehiclesWeather/StormsVaccineVaccinesViolence/Criminals

Recent Posts

  • UTA researcher explores integration and power electronic regulation of batteries for Navy
  • Bug eyes and bat sonar: UCLA bioengineers turn to animal kingdom for creation of bionic super 3D cameras
  • Overcoming a major manufacturing constraint
  • Snyder Institute researchers discover new approach to healing skin infections and wounds
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In