• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Oregon State research shows why some pockets of conifer survive repeated forest fires

Bioengineer by Bioengineer
May 18, 2021
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Will Downing, OSU

CORVALLIS, Ore. – Oregon State University researchers say “topographic templates” can help forest conservation managers develop strategies for protecting and restoring the most fire-resistant parts of vulnerable forests across a range of ecosystems.

That’s important because changing wildfire regimes are affecting forests around the globe, the scientists note, and areas that burn over and over in relatively quick succession may not be able to recover between fires.

“Fire refugia” – areas that burn less frequently and/or less severely than the landscape around them – are crucial for supporting post-blaze ecosystem recovery, including the persistence of species under pressure.

Findings of the study, led by faculty research assistant Will Downing, were published in Global Change Biology.

“Observed and projected forest losses from wildfire tell us that we need to understand where and why refugia persists through multiple fire events,” said OSU ecologist Meg Krawchuk, who oversees the College of Forestry’s Landscape Fire and Conservation Science lab group. “And we really need to understand fire refugia in the Klamath-Siskiyou ecoregion of southwest Oregon and northwest California. That area holds some of the most diverse collections of conifers in western North America, and expected increases in fire activity, along with a warming climate, could result in the loss of more than 30% of the region’s conifer forests.”

Krawchuk, Downing, Matt Gregory of the College of Forestry and Garrett Meigs of the Washington State Department of Natural Resources used recent advances in fire progression mapping and weather interpolation – estimating the information between known weather data points – plus a novel application of satellite smoke imagery to build new fire refugia statistical models for the Klamath-Siskiyou region.

The analysis focused on mature, conifer-dominated forests and looked at the key factors behind fire refugia occurrence and persistence through a series of three fire events over 32 years.

“The models suggest hotter-than-average fire weather is associated with lower refugia probability and higher fire severity,” Krawchuk said. “Refugia that persisted through three fire events appeared to benefit from topographic variability – a mix of rocky outcrops and landscape depressions, for example – which means the variability may be an important stabilizing factor as forests experience successive fires.”

In addition, the models show that smoke density strongly influences fire effects – refugia are more likely to occur when smoke is moderate or dense in the morning, a connection the scientists attribute to the shade smoke provides.

“Our hope is that this study can inform management strategies designed to protect fire-resistant portions of biologically and topographically diverse landscapes,” Krawchuk said.

Fire refugia are part of a larger category of hardy areas known as disturbance refugia, and comparatively little is known about why certain refugia are able to hang tough as they pass through successive “fire filters,” she said.

“Refugia can be transient and survive a single fire because of random weather or fire behavior conditions, or there can be persistent refugia that don’t change very much in the face of multiple fire events,” Downing said.

The Klamath-Siskiyou ecoregion is ideal for studying refugia occurrence and persistence because it’s a “biodiversity hotspot” in which fire has been a key ecological component for thousands of years.

“Fire there has contributed to the maintenance of patchy, heterogeneous landscapes of conifer and hardwood forests, shrublands and grasslands,” Downing said. “But a hotter and drier climate and a lack of surviving post-fire seed sources eat away at the ability of conifer forests to recover after a high-severity fire. Climate change is expected to increase fire frequency in the region, and repeat burning is projected to convert about a third of the conifer forest to shrublands or hardwood forest by the end of the 21st century.”

In some cases, that conversion will be a good thing ecologically, she said – such as where fire suppression has led to a decline in early seral communities, those that spring up after a stand-replacing event and before a new forest takes hold. In others, carbon storage and biodiversity, as well as timber supply, will be vulnerable from widespread conifer forest loss.

“Figuring out which areas are most likely to persist as forest through wildfire requires using landscape-scale assessments of the factors behind fire behavior and severity: topography, fuels and weather,” Krawchuk said. “Refugia are ecologically important parts of fire severity mosaics, and it appears that the more times a landscape burns, the more important terrain features are for refugia persistence.”

###

The National Fire plan and U.S. Forest Service Pacific Northwest Research Station, through agreements between the Aldo Leopold Wilderness Research Institute and OSU, supported this research.

Media Contact
Meg Krawchuk
[email protected]

Original Source

https://beav.es/3f6

Related Journal Article

http://dx.doi.org/10.1111/gcb.15655

Tags: AgricultureAtmospheric ScienceBiologyClimate ChangeEarth ScienceEcology/EnvironmentForestry
Share12Tweet8Share2ShareShareShare2

Related Posts

Uncovering Heat-Tolerant Flavonoids in Rice Mutant

September 4, 2025

House Centipedes: Rapid Leg Regeneration and Growth

September 4, 2025

Feed Additives Shield Quails from Gossypol Damage

September 4, 2025

Unlocking the Genetic Secrets of Migratory Mammals

September 3, 2025
Please login to join discussion

POPULAR NEWS

  • Needlestick Injury Rates in Nurses and Students in Pakistan

    297 shares
    Share 119 Tweet 74
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    118 shares
    Share 47 Tweet 30

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Chronic Ototoxicity Triggers Early Hair Cell Gene Downregulation

Linking Malnutrition, Food Insecurity, and Diet Compliance

Nutrition in First 1000 Days Shapes Lifelong Health

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.