• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Oncotarget: Both BRCA1-wild type and -mutant triple-negative breast cancers show

Bioengineer by Bioengineer
February 26, 2020
in Health
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Oncotarget Volume 11 Issue 8 features Figure 8, ‘MLN4924 treatment induces DNA damage by stabilizing CDT1 and accumulates the cells in S phase which are enhanced by MLN4924/cisplatin co-treatment,’ by Misra, et al.

IMAGE

Credit: Correspondence to – Alo Ray – [email protected]


Oncotarget Volume 11 Issue 8 features Figure 8, “MLN4924 treatment induces DNA damage by stabilizing CDT1 and accumulates the cells in S phase which are enhanced by MLN4924/cisplatin co-treatment,” by Misra, et al.

Moreover, adding MLN4924 to the standard TNBC chemotherapeutic agent cisplatin increased the DNA damage level, further enhancing the sensitivity.

In vivo, MLN4924 reduced tumor growth in a NOD-SCID mouse xenograft model by inducing DNA damage which was further augmented with the MLN4924 and cisplatin cotreatment.

Taken together, we demonstrated the mechanism of TNBC sensitization by the MLN4924 and MLN4924/cisplatin treatments irrespective of BRCA1 status, provided a strong justification for using MLN4924 alone or in combination with cisplatin, and identified a genetic background in which this combination will be particularly effective.

Dr. Alo Ray from the Department of Pathology and the Comprehensive Cancer Center at the Ohio State University in Columbus Ohio said, “Triple-negative breast cancer (TNBC) comprises 15–20% of breast cancer.“

“Triple-negative breast cancer (TNBC) comprises 15–20% of breast cancer.”

– Dr. Alo Ray, Center for Radiological Research, Department of Pathology and the Comprehensive Cancer Center at the Ohio State University

However, whether MLN4924 sensitizes breast tumors in vivo, is cytotoxic to BRCA1-mutated TNBC, and sensitizes TNBC to standard TNBC chemotherapeutics have not been investigated.

Here, we evaluated the efficacy of MLN4924 as a therapeutic agent in BRCA1-wild type and -mutant cells and examined if MLN4924 in combination with cisplatin, a standard platinum-based TNBC chemotherapeutic, enhances cytotoxicity.

Our results demonstrated that TNBC cell lines show a higher sensitivity to MLN4924 compared to cell lines representing other breast cancer subtypes due to the overexpression of NAE1 in TNBC compared to non-TNBC subtypes.

MLN4924 treatment resulted in >4N DNA content due to the re-replication of DNA leading to the accumulation of DNA damage, apoptosis, and senescence.

In vivo, MLN4924 significantly inhibited the growth of a TNBC xenograft model by inducing DNA damage, and MLN4924/cisplatin combination further reduced tumor growth by enhancing DNA damage.

The Ray Research Team concluded in their Oncotarget Research Paper that Additionally, the presence of p53 mutation in TNBC cells may promote re-replication upon MLN4924 treatment since activation of p53 by ATM/ATR/Chk2 regulates the re-replication through the induction of p21 supporting that p53 status is prognostic of outcome and MLN4924 treatment response of TNBC. Collectively, our results established the molecular mechanism by which MLN4924 induces TNBC cell death and enhances cisplatin sensitivity, provided the rationale of combining MLN4924 with cisplatin in both BRCA1-wild type and mutant TNBCs, and identified a cancer genetic background where this combination will be more effective.

###

Sign up for free Altmetric alerts about this article

Full text – https://doi.org/10.18632/oncotarget.27485

Correspondence to – Alo Ray – [email protected]

Keywords –
triple-negative breast cancer,
MLN4924,
cisplatin,
cell cycle,
DNA damage

About Oncotarget

Oncotarget is a weekly, peer-reviewed, open access biomedical journal covering research on all aspects of oncology.

To learn more about Oncotarget, please visit http://www.oncotarget.com or connect with:

SoundCloud – https://soundcloud.com/oncotarget
Facebook – https://www.facebook.com/Oncotarget/
Twitter – https://twitter.com/oncotarget
LinkedIn – https://www.linkedin.com/company/oncotarget
Pinterest – https://www.pinterest.com/oncotarget/
Reddit – https://www.reddit.com/user/Oncotarget/

Oncotarget is published by Impact Journals, LLC please visit http://www.ImpactJournals.com or connect with @ImpactJrnls

Media Contact

[email protected]
18009220957×105

Media Contact
Ryan James Jessup
[email protected]
202-638-9720

Original Source

http://www.oncotarget.com/news/pr/both-brca1-wild-type-and-mutant-triple-negative-breast-cancers-show-sensitivity-to-the-nae-inhibitor-mln4924-which-is-enhanced-upon-mln4924-and-cisplatin-combination-treatment/

Related Journal Article

http://dx.doi.org/10.18632/oncotarget.27485

Tags: cancerCarcinogensMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Quick Vessel Healing via Progenitor-Endothelial Cell Interaction

December 29, 2025

Comparing Follicular Fluid Metabolomes: Agonist vs Antagonist

December 29, 2025

Mitochondrial Gene Therapy: Progress and Challenges Ahead

December 29, 2025

Ensemble Learning Predicts Breast Cancer Surgery Costs

December 29, 2025
Please login to join discussion

POPULAR NEWS

  • Robotic Waist Tether for Research Into Metabolic Cost of Walking

    NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Quick Vessel Healing via Progenitor-Endothelial Cell Interaction

Future of Algeria’s Endemic Oak Under Climate Change

Measuring Body Composition in Full-Term Infants Reviewed

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.