• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

On-demand glass is right around the corner

Bioengineer by Bioengineer
March 20, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A project to create colloidal glasses characterized by a unidirectional stress

IMAGE

Credit: @GiulioMonaco UniTrento


Glasses used for camera lenses or reading glasses are not like those used to make windshields. They have a different degree of transparency and they break in a different way (the former break in large pieces, the latter in a multitude of tiny pieces). The techniques to obtain glasses with specific properties have long been known to the industry: a slow process for optical applications, tempering for glasses designed to break safely. These procedures determine the stress within the glass, which can therefore be easily minimized or maximized. But how to control the stress stored in a glass to adjusts it to our needs? If we could do that, we would be able to design new types of glass for new applications.

That is the question a research group of UniTrento, made up of physicists, tried to answer. The researchers focused on colloidal glasses, which are made up of microscopic particles dispersed in a solution at a concentration that allows the formation of a compact solid. The physicists of the University of Trento conducted a number of experiments at the Petra facility in Hamburg (Desy, Deutsches Elektronen-Synchrotron), Germany, and managed to create colloidal glasses characterised by a unidirectional stress, that is to say that the stresses stored locally in this material during the formation are all heading in the same direction. The results of the study were published in open access in Science Advances, the online peer-reviewed journal of the American Association for the Advancement of Science, based in Washington.

Giulio Monaco, director of the Department of Physics of the University of Trento and coordinator of the research work, explained: «Colloidal glasses are relatively stable. Think about window glass, that can last for centuries. However, locally, the atoms and particles are subject to heavy stresses, whose intensity, distribution and direction determine the mechanical properties of the material. It would be very useful if we could control those stresses».

He continued: «Measuring the intensity and direction of the stress stored in a glass is a crucial step to control these forces and therefore use them in industrial applications».

###

About the article

The authors of the article “Microscopic pathways for stress relaxation in repulsive colloidal glasses” are: Francesco Dallari, who is currently at Desy in Hamburg, and Alessandro Martinelli (principal authors), Federico Caporaletti and Giulio Monaco, of the University of Trento; and Michael Sprung and Gerhard Grübel for the Deutsches Elektronen-Synchrotron in Hamburg, Desy.

The research study was funded within the European project CALIPSOplus, Convenient Access to Light Sources Open to Innovation, Science and to the World (Horizon 2020).

The article was published today in Science Advances and is available in Open Access.

Media Contact
Alessandra Saletti
[email protected]
328-150-7260

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsMechanical EngineeringMolecular PhysicsNanotechnology/MicromachinesParticle PhysicsPolymer ChemistryTechnology Transfer
Share12Tweet8Share2ShareShareShare2

Related Posts

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025
Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling Neoschaftoside’s Role Against Lung Cancer

Low-Dose Dienogest Eases Endometriosis Pain in Trial

Nanoplastics Trigger Unique Toxicity in Human Gut Cells

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.