• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Octopus-inspired wearable sensor

Bioengineer by Bioengineer
May 22, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Adapted from ACS Appl. Mater. Interfaces 2019, 11, 16951?16957

Wearable electronics that adhere to skin are an emerging trend in health sensor technology for their ability to monitor a variety of human activities, from heart rate to step count. But finding the best way to stick a device to the body has been a challenge. Now, a team of researchers reports the development of a graphene-based adhesive biosensor inspired by octopus “suckers.” They report their findings in ACS Applied Materials & Interfaces.

For a wearable sensor to be truly effective, it must be flexible and adhere fully to both wet and dry skin but still remain comfortable for the user. Thus, the choice of substrate, the material that the sensing compounds rest upon, is crucial. Woven yarn is a popular substrate, but it sometimes doesn’t fully contact the skin, especially if that skin is hairy. Typical yarns and threads are also vulnerable to wet environments. Adhesives can lose their grip underwater, and in dry environments they can be so sticky that they can be painful when peeled off. To overcome these challenges, Changhyun Pang, Changsoon Choi and colleagues worked to develop a low-cost, graphene-based sensor with a yarn-like substrate that uses octopus-like suckers to adhere to skin.

The researchers coated an elastic polyurethane and polyester fabric with graphene oxide and soaked in L-ascorbic acid to aid in conductivity while still retaining its strength and stretch. From there, they added a coating of a graphene and poly(dimethylsiloxane) (PDMS) film to form a conductive path from the fabric to the skin. Finally, they etched tiny, octopus-like patterns on the film. The sensor could detect a wide range of pressures and motions in both wet and dry environments. The device also could monitor an array of human activities, including electrocardiogram signals, pulse and speech patterns, demonstrating its potential use in medical applications, the researchers say.

###

The authors acknowledge funding from the National Research Foundation of Korea, the Korean Ministry of Education and the Korean Ministry of Science.

The abstract that accompanies this study is available here.

The American Chemical Society, the world’s largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us on Twitter | Facebook

Media Contact
Katie Cottingham
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/acsami.9b04206

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyCardiologyChemistry/Physics/Materials SciencesDiagnosticsElectrical Engineering/ElectronicsMarine/Freshwater BiologyNanotechnology/MicromachinesZoology/Veterinary Science
Share12Tweet7Share2ShareShareShare1

Related Posts

MALAT1 Knockdown Reduces High Glucose Neuronal Apoptosis

MALAT1 Knockdown Reduces High Glucose Neuronal Apoptosis

August 25, 2025
Evaluating My Dose Coachâ„¢ for Insulin Management in Diabetes

Evaluating My Dose Coach™ for Insulin Management in Diabetes

August 25, 2025

HIV-Linked Cervicovaginal Microbiome Changes in Peruvian Women

August 25, 2025

Urtica dioica Boosts Cisplatin-Induced Apoptosis in Ovarian Cancer

August 25, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    139 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

MALAT1 Knockdown Reduces High Glucose Neuronal Apoptosis

Evaluating My Dose Coach™ for Insulin Management in Diabetes

HIV-Linked Cervicovaginal Microbiome Changes in Peruvian Women

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.