• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Ocean acidification is damaging shark scales

Bioengineer by Bioengineer
January 8, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

HHU marine biologists publish article in Scientific Reports

IMAGE

Credit: Lutz Auerswald (left) / Jacqueline Dziergwa (right)

While regular fish have flat scales, shark ‘scales’ look more like teeth. But their denticles also cover their body and in particular influence their ability to swim. The denticles are made up of a compounds containing calcium.

The increasing amount of carbon dioxide (CO2) in the atmosphere due to climate change has also led to a higher concentration of CO2 in the oceans. The CO2 dissolves in the seawater to create carbonic acid that acidifies the oceans.

This higher acidity has already been found to damage the calcium carbonate in corals and other animals with calcium-based structures. The research team from three South African research institutions, from the University of Duisburg-Essen and HHU has now examined whether the more acidic seawater is also affecting sharks.

The study was performed on puffadder shysharks, which live in the Atlantic Ocean off the coast of Cape Town and are also kept in aquariums in the DAFF Research Aquarium in Cape Town. A number of sharks were exposed to more acidic water over a period of several weeks and compared with control sharks in normal seawater. After that time, the researchers found that an average of around 25 percent of the denticles had been damaged compared to a figure of less than ten percent for sharks in a benchmark group living in normal water. The harm to the group exposed to acid can be so great that it limits their ability to swim. Because the sharks’ teeth are made from a similar material, they can also be negatively affected, which can in turn have an impact on their food intake.

In a further series of studies, the researchers analysed the blood of the animals kept in both acidic and normal seawater. They found that both CO2 and bi-carbonate concentrations were higher in the exposed group, with bi-carbonate preventing the blood itself from becoming more acidic. This means that sharks have acid-base regulatory mechanism for adapting to the environmental conditions.

Students in the HHU working group of Prof. Dr. Christopher Bridges from the Institute of Metabolic Physiology undertook several research trips to South Africa. They carried out experiments there and took samples which they brought back to Düsseldorf and then analysed the structure and chemistry of the samples at HHU.

###

The research is part of the comprehensive project “BIOACID – Biological Impacts of Ocean Acidification”, which was funded by the Federal Ministry of Education and Research and to which a number of German universities and research institutions are affiliated.

Further information on BIOACID. https://www.oceanacidification.de/

Original publication

Jacqueline Dziergwa, Sarika Singh, Christopher R Bridges, Sven E Kerwath, Joachim Enax, Lutz Auerswald, Acid-base adjustments and first evidence of denticle corrosion caused by ocean acidification conditions in a demersal shark species, Sci Rep. 2019

DOI: 10.1038/s41598-019-54795-7

Media Contact
Dr. Arne Claussen
[email protected]
49-021-181-10896

Related Journal Article

http://dx.doi.org/10.1038/s41598-019-54795-7

Tags: BiochemistryBiologyBiomechanics/BiophysicsClimate ChangeMarine/Freshwater Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Antiparasitic Agents’ Efficacy Against Blastocystis Reviewed

November 10, 2025
blank

Grassland Degradation Disrupts Biodiversity and Function Links

November 10, 2025

Exploring hsa-miR-1247-5p and TRIB2 in Sepsis Lung Injury

November 10, 2025

Respiratory Immunization with Inactivated B. pertussis Protects Mice

November 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

131 Genetic Loci Reveal Immunity in Nasal Polyps

Enhancing Enzymatic Hydrolysis with Non-Ionic Surfactants

Deep Learning Boosts Breast Lesion Detection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.