• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, March 4, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

NYUAD researchers develop high throughput paper-based arrays of 3D tumor models

Bioengineer by Bioengineer
February 22, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New technology will help researchers predict the outcomes of drug efficacy and can guide the development of drug treatments for tumors

IMAGE

Credit: NYU Abu Dhabi

Abu Dhabi, UAE, February 22: By engineering common filter papers, similar to coffee filters, a team of NYU Abu Dhabi researchers have created high throughput arrays of miniaturized 3D tumor models to replicate key aspects of tumor physiology, which are absent in traditional drug testing platforms. With the new paper-based technology, the formed tumor models can be safely cryopreserved and stored for prolonged periods for on-demand drug testing use. These cryopreservable tumor models could provide the pharmaceutical industry with an easy and low cost method for investigating the outcomes of drug efficacy, potentially bolstering personalized medicine. The developed technology can be transferred to other trending therapeutic applications such as measuring tumor response to drug concentration gradients, studying cancer cell signaling pathways, and investigations of invasive tumors.

The findings were published in the paper Cryopreservable Arrays of Paper-Based 3D Tumor Models for High Throughput Drug Screening, in the flagship journal, Lab on a Chip. The findings build on the team’s earlier research engineering the paper platforms.

Led by Assistant Professor of Mechanical and Biomedical Engineering at NYUAD Mohammad A. Qasaimeh, the researchers sought to develop 3D tumor models because they offer great potential for understanding the fundamental mechanisms governing tumor responses to drug treatments, and provide opportunities to develop a number of emerging therapeutic applications. Currently, most pre-clinical drug screening is conducted on simplified two-dimensional (2D) monolayers of cell culture which do not fully represent the complexity of human tissues and organs.

Existing methods for developing 3D cell cultures and tumor models are laborious, technically challenging, time consuming, and do not allow cryopreservation for future use. This contributes to high attrition rates in the drug development process, and can cause significant delays to market and major financial losses to companies.

“Our work presents a paper patterning method for high throughput cell culture, cryopreservation, and drug testing of 3D tumor models. This technology is very promising to provide unparalleled advantages to the fields of drug discovery, tissue engineering, and personalized medicine,” said Qasaimeh, the Principal Investigator of the Laboratory and the study leader.

By testing cisplatin (a typical chemotherapeutic drug) on breast cancer 3D models generated within the developed platform, they were able to prove that their technology is capable of predicting the outcomes of drug efficacy. Breast cancer is considered the most frequently diagnosed cancer in more than 80 percent worldwide. In the USA more than 10 percent of women are reported to develop invasive breast cancer over the course of their lives, and in the UAE, breast cancer is considered the most common malignancy based on incidence and mortality.

“Our reliable, easy-to-prepare, and inexpensive method is for creating high throughput paper-based arrays of 3D tumor models that will bring us one step closer to biomimetic drug screening in the pre-clinical stages,” said Bisan Samara, the first author and a former research assistant in Qasaimeh’s lab.

This research is an advancement of the team’s earlier work, Paper-based Cell Cryopreservation, published last year in the journal Advanced Biosystems, in which they established their new technique utilizing filter paper to cryopreserve human cells, offering scientists an efficient alternative to conventional, long-term cryopreservation methods.

###

About NYU Abu Dhabi

NYU Abu Dhabi is the first comprehensive liberal arts and science campus in the Middle East to be operated abroad by a major American research university. NYU Abu Dhabi has integrated a highly-selective liberal arts, engineering and science curriculum with a world center for advanced research and scholarship enabling its students to succeed in an increasingly interdependent world and advance cooperation and progress on humanity’s shared challenges. NYU Abu Dhabi’s high-achieving students have come from more than 115 nations and speak over 115 languages. Together, NYU’s campuses in New York, Abu Dhabi, and Shanghai form the backbone of a unique global university, giving faculty and students opportunities to experience varied learning environments and immersion in other cultures at one or more of the numerous study-abroad sites NYU maintains on six continents.

Media Contact
Adam Pockriss
[email protected]

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologycancerMedicine/HealthPharmaceutical ScienceResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

New microcomb could help discover exoplanets and detect diseases

March 4, 2021
IMAGE

Purdue Research Foundation partners with IdentifySensors Biologics for COVID-19 technology

March 4, 2021

Nature: new compound for male contraceptive pill

March 3, 2021

Conquering the timing jitters

March 3, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    665 shares
    Share 266 Tweet 166
  • People living with HIV face premature heart disease and barriers to care

    83 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Cell BiologyTechnology/Engineering/Computer SciencePublic HealthEcology/EnvironmentInfectious/Emerging DiseasescancerBiologyMedicine/HealthClimate ChangeGeneticsMaterialsChemistry/Physics/Materials Sciences

Recent Posts

  • Research contributes to understanding of hypersonic flow
  • New microcomb could help discover exoplanets and detect diseases
  • Purdue Research Foundation partners with IdentifySensors Biologics for COVID-19 technology
  • Air pollution fell sharply during lockdown
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In