• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, February 4, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Novel targeted modification strategy improves selectivity of polyamide nanofiltration membranes

Bioengineer by Bioengineer
March 11, 2021
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: WANG Jingyu

Recently, a research group led by Prof. WAN Yinhua from the Institute of Process Engineering (IPE) of the Chinese Academy of Sciences developed a novel targeted modification strategy to improve the separation selectivity of polyamide NF membranes.

The study was published in Journal of Membrane Science on March 10.

The low selectivity of commercial nanofiltration (NF) membranes to monosaccharides and monovalent salts is mainly due to the nonuniform pore size distribution and strong electronegativity.

Targeted modification can regulate the pore size distribution and electronegativity of polyamide NF membranes, and thus improve the separation selectivity.

In the strategy, carboxyl groups (-COOH) on the surface are activated by N-(3-Dimethylaminopropyl)-N’-ethyl carbodiimide (EDC) and N-Hydroxy succinimide (NHS), and subsequently grafted onto monomer or polymer containing amino groups (-NH2) for more precise separation.

The novel targeted modification strategy reduced the effective mean pore size while maintaining the porosity of the NF membrane, due to pore segmentation. This resulted in a remarkable improvement in glucose/fructose rejection (from 67.96% to 84.14%) and separation factor (from 2.20 to 6.78), with only a 4.70% permeability loss.

“The outcome of this work not only improves the separation efficiency of small organic and inorganic salts by NF, but also provides a new perspective in regulating pore size distribution and surface charge of NF membranes for precisely separating small molecules,” said Prof. LUO Jianquan from IPE, the corresponding author of the study.

The modified membrane also maintained separation performance in crossflow filtration and after alkaline cleaning, which outperformed the pristine NF membrane and those modified by uniform coating and simple physical adsorption.

###

Media Contact
LI Xiangyu
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.memsci.2021.119250

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

Blocking NXPH4/ALDH1L2 Overcomes Enzalutamide Resistance

February 4, 2026

Indolent Cutaneous B-Cell Lymphomas Mimic Persistent Antigen Reactions

February 4, 2026

Two Decades of Public Health Advances in Dementia Unveiled in New Journal Report

February 4, 2026

Why Fat Cravings Evolved: Biology and Philosophy

February 4, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    158 shares
    Share 63 Tweet 40
  • Robotic Ureteral Reconstruction: A Novel Approach

    81 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Blocking NXPH4/ALDH1L2 Overcomes Enzalutamide Resistance

Indolent Cutaneous B-Cell Lymphomas Mimic Persistent Antigen Reactions

Two Decades of Public Health Advances in Dementia Unveiled in New Journal Report

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.