• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Novel study discovers ‘metabolic fingerprint’ to help treat, diagnosis and prevent cervical cancer

Bioengineer by Bioengineer
May 14, 2019
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the University of Arizona have completed the first-of-its-kind study that could aid in the treatment, diagnosis and prevention of cervical cancer by identifying cervicovaginal metabolic signatures, or “fingerprints” that distinguish patients with HPV, pre-cancerous cervical conditions and cancer.

An interdisciplinary team led by Melissa Herbst-Kralovetz, PhD, associate professor at the UA College of Medicine – Phoenix, integrated cutting-edge analyses, including metabolomics, to reveal new information about how viruses, bacteria, inflammation and disease impact metabolic signatures. During the analysis, the group identified three compounds that distinguish cervical cancer patients from healthy women.

The study, “Deciphering the complex interplay between microbiota, HPV, inflammation and cancer through cervicovaginal profiling” was published online April 24 in EBioMedicine. This is the first report on cervicovaginal metabolomes in HPV-associated precancerous cervical conditions and cancer that demonstrates the predictive value of metabolic fingerprinting in abnormal cell metabolism. The study identified 475 metabolites in cervicovaginal samples that changed across progression of disease, resulting in unique metabolic fingerprints.

The metabolome is the collection of biochemicals, or metabolites, present in cells, tissues or body fluids, whereas metabolites are the individual molecules that make up the metabolome. Levels of these metabolites often change in response to disease. Metabolomics is the comprehensive study of the metabolome that has the potential to impact science.

“This study is an example of how scientific research and breakthroughs directly impact patient care,” William Cance, MD, deputy director of the UA Cancer Center said. “Dr. Herbst-Kralovetz, also a researcher at the UA Cancer Center, and her colleagues have employed novel biologic analyses to identify metabolic fingerprints that could be used to develop future diagnostics, interventions or therapies for cervical cancer.”

The fingerprints identified in the study helped distinguish HPV-infected individuals, women with precancerous conditions and cervical cancer from women who were HPV negative.

“Metabolic fingerprinting has the potential to be used for the development of future diagnostics, preventatives or treatments for cervical cancer to enhance women’s health outcomes here in Arizona and beyond,” said Dr. Herbst-Kralovetz, who also is director of the Women’s Health Microbiome Initiative at the College of Medicine – Phoenix. “Doing so could aid in reducing mortality to the fourth-leading cause of cancer in women.”

Results of the study will allow researchers to better understand risk factors, determine who is at a higher risk for developing cervical cancer and lead to larger clinical trials.

Women diagnosed with invasive cervical cancer, compared to those who were HPV negative, were highly associated with genital inflammation and a higher vaginal pH. In precancerous groups, researchers observed how microbial communities influenced amino acid and nucleotide metabolisms, which are building blocks of cells.

A novel aspect of their analysis revealed how specific metabolites were associated with different vaginal bacterial communities, as well as levels of genital inflammation. An increase in the health-associated Lactobacillus correlated with high levels of anti-inflammatory nucleotides. Collectively, they revealed that specific features (HPV infection, genital inflammation and vaginal bacteria) of the reproductive tract’s microenvironment profoundly impact cervicovaginal metabolomes.

“Cervical cancer is a devastating disease, especially in rural areas and developing countries,” said Jennifer Barton, PhD, director of the UA BIO5 Institute. “These findings could lead to a simple, rapid diagnostic test to help women get the treatment they need.”

###

The research was made possible through the financial support of the Banner Foundation in Obstetrics and Gynecology and from the Flinn Foundation Grant No. 1974.

About the UA College of Medicine – Phoenix

Founded in 2007, the University of Arizona College of Medicine – Phoenix inspires and trains exemplary physicians, scientists and leaders to optimize health and health care in Arizona and beyond. By cultivating collaborative research locally and globally, the college accelerates discovery in a number of critical areas – including cancer, stroke, traumatic brain injury and cardiovascular disease. Championed as a student-centric campus, the college has graduated 433 physicians, all of whom received exceptional training from nine clinical partners and 1,800 diverse faculty members. As the anchor to the Phoenix Biomedical Campus, which is projected to have an economic impact of $3.1 billion by 2025, the college prides itself on engaging with the community, fostering education, inclusion, access and advocacy. For more information, please visit phoenixmed.arizona.edu.

Media Contact
Teresa Joseph
[email protected]

Related Journal Article

https://opa.uahs.arizona.edu/newsroom/news/2019/novel-study-discovers-metabolic-fingerprint-help-treat-diagnosis-and-prevent
http://dx.doi.org/10.1016/j.ebiom.2019.04.028

Tags: AIDS/HIVcancerInfectious/Emerging DiseasesMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Immunotherapy Plus Radiotherapy in Advanced Lung Cancer

October 30, 2025

Moffitt Research Reveals Complementary Approaches to Combat Resistance to KRAS G12C Inhibitors in Lung Cancer

October 30, 2025

Mount Sinai Tisch Cancer Center Unveils Real-Time Data Integration Tool to Accelerate and Enhance Research Accuracy

October 30, 2025

University of South Florida Establishes Pioneering Virology Institute Under the Leadership of Renowned Scientist Dr. Robert C. Gallo

October 30, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1292 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Researchers Discover Novel Energy Potential in Iron-Based Materials

Impact of Childhood Trauma on Autistic Youth Health

UCSB Experimentalists Awarded Gordon and Betty Moore Foundation Grants to Propel New Insights and Innovations

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.