• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Normothermic Machine Perfusion (NMP) in rat livers extended from 6 to 24 hours

Bioengineer by Bioengineer
November 17, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Author

In a paper published in TECHNOLOGY, a team of researchers from Massachusetts General Hospital (MGH) have demonstrated 24-hour rat liver viability in a normothermic machine perfusion (NMP) system. Rat liver perfusion is an efficient and cost-effective method to study how various pharmacologic agents impact liver parenchyma.

Normothermic machine perfusion (NMP) has the challenge of mirroring in-vivo settings as closely as possible for the liver allograft. This allows drugs, enzymatic reactions, repair processes, and metabolic pathways to affect liver function to their full capacity. However, under normothermic conditions (35-38°C), the perfusions become exponentially more complex when the perfusion duration is extended, severely limiting our ability to observe liver physiology and pharmacologic effects after 6 hours.

This work builds on existing NMP systems with critical modifications in technique and design to
extend the perfusion time of a rat liver allograft without complications or ischemic events. Addressing these issues in NMP greatly expands the armamentarium of experiments that can be conducted to assess how livers responds to physiologic insults and pharmacologic agents over time ex-vivo.

Another major achievement of this research is the identification of perfusion metrics that are predictive of long-term (24-hour) perfusion success. Liver oxygen consumption and rises in intra-hepatic resistance (see image) are shown to be early predictive markers of perfusion system contamination. These markers can be utilized in future experiments to assess the stability of long NMP experiments which can save valuable time and resources in pharmacologic studies.

The team from MGH is working now to utilize long-term rat liver normothermic perfusions to trial different pharmacologic delivery mechanisms, such as lipid nanoparticles, as a novel method of targeted drug delivery.

###

Corresponding author for this study in TECHNOLOGY is Dr. Korkut Uygun PhD ([email protected]).
Additional co-authors are Casie A. Pendexter, Stephanie E.J. Cronin, Dr. Siavash Raigani MD, Dr. Reiner J. de Vries MD PhD, Dr. Heidi Yeh MD, and Dr. James F. Mark-mann MD PhD.

This work was funded from the US National Institutes of Health (NSF ATP-Bio ERC grant (NSF 1941543), R01DK096075, R01DK114506, R01DK107875). Further, we gratefully acknowledge re-search support to Omar Haque by the American Liver Foundation (2019 Hans Popper Memorial Post-doctoral Research Fellowship) and the American College of Surgeons (Grant number 1123-39991 scholarship endowment fund).

For more insight into the research described, readers are invited to access the paper on TECHNOLOGY.

IMAGE

Caption: Normothermic machine perfusion system with rat liver perfused in William’s E based media. b) Intra-hepatic resistance levels at 12 hours predictive of contaminated versus uncontaminated 24-hour perfusions. c) Intra-hepatic resistance of five uncontaminated perfusions show relatively stable pressures over 24 hours.

Fashioned as a high-impact, high-visibility, top-echelon publication, this new ground-breaking journal – TECHNOLOGY – will feature the development of cutting-edge new technologies in a broad array of emerging fields of science and engineering. The content will have an applied science and technological slant with a focus on both innovation and application to daily lives. It will cover diverse disciplines such as health and life science, energy and environment, advanced materials, technology-based manufacturing, information science and technology, and marine and transportations technologies.

About World Scientific Publishing Co.

World Scientific Publishing is a leading independent publisher of books and journals for the scholarly, research, professional and educational communities. The company publishes about 600 books annually and about 135 journals in various fields. World Scientific collaborates with prestigious organizations like the Nobel Foundation and US National Academies Press to bring high quality academic and professional content to researchers and academics worldwide. To find out more about World Scientific, please visit http://www.worldscientific.com.
For more information, contact Tay Yu Shan at [email protected].

Media Contact
Yu Shan Tay
[email protected]

Original Source

https://www.worldscientific.com/pressroom/2020-11-17-01

Related Journal Article

http://dx.doi.org/10.1142/S2339547820500028

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyGastroenterologyLiverMedicine/HealthPhysiologyTransplantation
Share12Tweet8Share2ShareShareShare2

Related Posts

Phage Research: Breakthrough Discoveries Unveiled!

Phage Research: Breakthrough Discoveries Unveiled!

September 10, 2025
blank

In Quantum Sensing, Overcoming Noise by Meeting It Halfway

September 10, 2025

USC Study Reveals How PFAS Impair Healthy Function in Human Liver Cells

September 10, 2025

URI Study Connects Microplastic Exposure to Alzheimer’s Disease in Mice

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    61 shares
    Share 24 Tweet 15
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage Research: Breakthrough Discoveries Unveiled!

In Quantum Sensing, Overcoming Noise by Meeting It Halfway

USC Study Reveals How PFAS Impair Healthy Function in Human Liver Cells

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.