• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, March 8, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

NIH study shows hyaluronan is effective in treating chronic lung disease

Bioengineer by Bioengineer
February 1, 2021
in Health
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Naturally produced by the body, hyaluronan represents a new class of biologic that significantly improves lung health in patients with severe COPD.

IMAGE

Credit: Stavros Garantziotis, M.D.

Researchers at the National Institutes of Health and their collaborators found that inhaling unfragmented hyaluronan improves lung function in patients suffering from severe exacerbation of chronic obstructive pulmonary disease (COPD). Hyaluronan, a sugar secreted by living tissue that acts as a scaffold for cells, is also used in cosmetics as a skin moisturizer and as a nasal spray to moisturize lung airways. Utilized as a treatment, hyaluronan shortened the amount of time COPD patients in intensive care needed breathing support, decreased their number of days in the hospital, and saved money by reducing their hospital stay.

The study, published online in Respiratory Research, is a good example of how examining the impacts of environmental pollution on the lungs can lead to viable treatments. Several years ago, co-senior author Stavros Garantziotis, M.D., medical director of the Clinical Research Unit at the National Institute of Environmental Health Sciences (NIEHS), part of NIH, showed that exposure to pollution causes hyaluronan in the lungs to break down into smaller fragments. These fragments irritate lung tissue and activate the immune system, leading to constriction and inflammation of the airways. He determined that inhalation of healthy, unfragmented hyaluronan reduces inflammation by outcompeting the smaller hyaluronan fragments.

Garantziotis offered an analogy for how the inflammation occurs. He said hyaluronan surrounds cells like mortar surrounds bricks. Introducing pollution causes cracks in the mortar, breaking it into smaller chunks.

“These smaller chunks irritate the body and activate the immune system, leading to inflammation,” Garantziotis said. “Reintroducing the full-length hyaluronan, like a fresh coat of mortar, means it is less irritating and reduces the amount of inflammation.”

Since hyaluronan was approved in Italy for airway moisturization, Garantziotis worked with colleagues in Rome to see if inhalation of full-size hyaluronan could improve lung function in critically ill COPD patients. He explained that the patients were using a breathing apparatus similar to a continuous positive airway pressure (CPAP) machine to treat their acute exacerbation of COPD. This apparatus provided breathing support by blowing air into the airways through a mask.

“Inhaled hyaluronan qualifies as a stimulating aid for patients with exacerbated COPD, as it is safe and easy to administer,” said co-senior author Raffaele Incalzi, M.D., Department of Medicine, Campus Bio-Medico University and Teaching Hospital, Rome. “Furthermore, it acts locally, only in the bronchial tree, and, thus, cannot interfere with any systemic drug.”

Garantziotis also wanted to know what was producing airway constriction in the lungs of COPD patients. He theorized that thick mucus may be involved. Collaborating with scientists at the University of Alabama at Birmingham (UAB), they grew airway cells from emphysema patients in culture and looked at how mucus moved in the cells. They saw that mucus flowed more easily after administering hyaluronan.

Co-author Steven Rowe, M.D., director of the Gregory Fleming James Cystic Fibrosis Research Center at UAB, said if patients with severe COPD took hyaluronan, the treatment would improve mucus transport and aid their recovery.

Current treatments for lung disease include inhaled steroids, antibiotics, and bronchodilators, so using a molecule that is already found in the body is a new concept. The goal now for Garantziotis is to study this treatment in more patients in the U.S., so he can understand the optimal conditions and dosing that will produce the most benefit.

###

About the National Institute of Environmental Health Sciences (NIEHS): NIEHS supports research to understand the effects of the environment on human health and is part of the National Institutes of Health. For more information on NIEHS or environmental health topics, visit http://www.niehs.nih.gov or subscribe to a news list.

About the National Institutes of Health (NIH): NIH, the nation’s medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

Grant Numbers:

Z01ES102605

Z01ES102465

R35HL135816

P30DK072482

Reference: Galdi F, Pedone C, McGee CA, George M, Rice AB, Hussain SS, Vijaykumar K, Boitet ER, Tearney GJ, McGrath JA, Brown AR, Rowe SM, Incalzi RA, Garantziotis S. 2021. Inhaled high molecular weight hyaluronan ameliorates respiratory failure in acute COPD exacerbation: a pilot study. Respir Res: doi: 10.1186/s12931-020-01610-x [Online 1 February 2021].

Media Contact
Robin Arnette
[email protected]

Related Journal Article

http://dx.doi.org/10.1186/s12931-020-01610-x

Tags: Environmental HealthMedicine/HealthPulmonary/Respiratory Medicine
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Helping people understand glaucoma with a mobile app

March 8, 2021
IMAGE

New Lancet series shows mixed progress on maternal and child undernutrition in last decade

March 7, 2021

Study reveals how egg cells get so big

March 5, 2021

Survey identifies factors in reducing clinical research coordinator turnover

March 5, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    694 shares
    Share 278 Tweet 174
  • People living with HIV face premature heart disease and barriers to care

    86 shares
    Share 34 Tweet 22
  • Global analysis suggests COVID-19 is seasonal

    39 shares
    Share 16 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

BiologyEcology/EnvironmentMaterialsMedicine/HealthClimate ChangePublic HealthCell BiologyInfectious/Emerging DiseasescancerGeneticsTechnology/Engineering/Computer ScienceChemistry/Physics/Materials Sciences

Recent Posts

  • Helping people understand glaucoma with a mobile app
  • Virtual avatar coaching with community context for adult-child dyads
  • New Lancet series shows mixed progress on maternal and child undernutrition in last decade
  • “Magic sand” might help us understand the physics of granular matter
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In