• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, January 23, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New therapeutic target pinpointed for stomach cancer

Bioengineer by Bioengineer
December 17, 2020
in Health
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: WEHI, Australia

WEHI researchers have identified a key molecular regulator involved in the progression and spread of stomach cancer, suggesting a potential new approach to treat this devastating disease.

The team discovered that removing the inflammatory signalling protein TNF in a laboratory model prevented early stage stomach cancers from progressing to a more severe stage that, in humans, is much harder to treat. This discovery suggests that stomach cancers may respond to medicines that inhibit TNF. Of note, drugs that inhibit TNF have already shown success in the clinic for certain other diseases, particularly rheumatoid arthritis.

The research, published in the journal Gastroenterology, was led by Dr Lorraine O’Reilly, Dr Tracy Putoczki, Professor Andreas Strasser, Dr Jun Ting Low and Dr Michael Christie, who is also a clinical pathologist at The Royal Melbourne Hospital.

At a glance

  • Stomach cancer is often diagnosed at advanced, hard-to-treat stages – and better treatments are urgently needed.
  • Using a laboratory model, our researchers revealed that the inflammatory signalling protein TNF is required for stomach cancer to develop and progress to an advanced, invasive stage.
  • This discovery suggests that medicines that inhibit TNF – which are already in clinical use for other diseases – may be an effective new treatment for stomach cancer.

Pinpointing the culprits

More than one million people around the world – including more than 2000 Australians – are diagnosed with stomach cancer each year. This cancer is often detected late, at hard-to-treat stages, with fewer than one-third of Australians with stomach cancer surviving for five years after their diagnosis.

Understanding which factors are important for stomach cancer to develop and progress to invasive stages could lead to much-needed better treatments. To do this, the research team used a laboratory model of stomach cancer that they had developed, Dr O’Reilly said.

“Human stomach cancer can be caused by prolonged inflammation and our model of stomach cancer, that is driven by the absence of the protein NF-KB1, accurately reflects the sequential changes seen in human stomach cancer as it progresses from an early, inflammatory stage.

“We discovered that invasive stomach cancers contain high levels of various factors involved in inflammation, including four soluble proteins called cytokines.

“By removing each of the four cytokines that were elevated in our model, we could assess how important each one was. This revealed that the cytokine TNF was required for the progression of stomach cancer,” she said.

Potential new therapies

The discovery that TNF is a critical driver of stomach cancer development raised the possibility of this cytokine being a potential therapeutic target, Dr Putoczki said.

“Many therapies have shown great promise in treating inflammatory diseases by targeting specific cytokines,” she said. “Excitingly, there are already medicines in clinical use that block TNF, most notably for the treatment of rheumatoid arthritis.

“Our research suggests these therapies could be an effective and safe way to prevent the progression of stomach cancer to more severe, invasive forms. This is an area we are looking at in more detail.”

###

The research team acknowledged the input of research consumers Mr Frank and Mrs Ronnie Graham and Mrs Deborah Clements.

The research was supported by the Australian National Health and Medical Research Council, Cancer Council Victoria, Cancer Australia, Cancer Council NSW, the Dyson Bequest Centenary Fellowship, the Victorian Cancer Agency, Worldwide Cancer Research, Cancer Therapeutics CRC, an Australian Postgraduate Award and the Victorian Government.

Media Contact
Vanessa Solomon
[email protected]

Original Source

https://www.wehi.edu.au/news/new-therapeutic-target-pinpointed-stomach-cancer

Related Journal Article

http://dx.doi.org/10.1053/j.gastro.2020.06.039

Tags: BiologycancerGastroenterologyImmunology/Allergies/AsthmaMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

New maintenance treatment for acute myeloid leukemia prolongs the lives of patients

January 22, 2021
IMAGE

Potential combined drug therapy for lung cancer

January 22, 2021

University of Cincinnati student uses zebrafish to study spinal deformities

January 22, 2021

Addressing the impact of structural racism on disparities in children with Type 1 diabetes

January 22, 2021
Next Post
IMAGE

New nanobiomaterial from the silk of a mite with 'promising biomedical properties'

IMAGE

Neuroregenerative gene therapy

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    65 shares
    Share 26 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Technology/Engineering/Computer ScienceBiologyClimate ChangePublic HealthMaterialsInfectious/Emerging DiseasesMedicine/HealthcancerGeneticsCell BiologyEcology/EnvironmentChemistry/Physics/Materials Sciences

Recent Posts

  • Regulating the ribosomal RNA production line
  • A professor from RUDN University developed new liquid crystals
  • New technique builds super-hard metals from nanoparticles
  • No more needles for diagnostic tests?
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In