• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, April 17, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

New statistical model predicts which cities could become ‘superspreaders’

Bioengineer by Bioengineer
March 18, 2021
in Immunology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Model efficiently combines connectivity between cities with cities’ varying suitability for spread

IMAGE

Credit: Eric Fischer, 2011, Flickr

Researchers have developed a new statistical model that predicts which cities are more likely to become infectious disease hotspots, based both on interconnectivity between cities and the idea that some cities are more suitable environments for infection than others. Brandon Lieberthal and Allison Gardner of the University of Maine present these findings in the open-access journal PLOS Computational Biology.

In an epidemic, different cities have varying risks of triggering superspreader events, which spread unusually large numbers of infected people to other cities. Previous research has explored how to identify potential “superspreader cities” based on how well each city is connected to others or on each city’s distinct suitability as an environment for infection. However, few studies have incorporated both factors at once.

Now, Lieberthal and Gardner have developed a mathematical model that identifies potential superspreaders by incorporating both connectivity between cities and their varying suitability for infection. A city’s infection suitability depends on the specific disease being considered, but could incorporate characteristics such as climate, population density, and sanitation.

The researchers validated their model with a simulation of epidemic spread across randomly generated networks. They found that the risk of a city becoming a superspreader increases with infection suitability only up to a certain extent, but risk increases indefinitely with increased connectivity to other cities.

“Most importantly, our research produces a formula in which a disease management expert can input the properties of an infectious disease and the human mobility network and output a list of cities that are most likely to become superspreader locations,” Lieberthal says. “This could improve efforts to prevent or mitigate spread.”

The new model can be applied to both directly transmitted diseases, such as COVID-19, or to vector-borne illnesses, such as the mosquito-borne Zika virus. It could provide more in-depth guidance than traditional metrics of risk, but is also much less computationally intensive than advanced simulations.

###

Peer-reviewed; Simulation / modelling

In your coverage please use this URL to provide access to the freely available article in PLOS Computational Biology:

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008674

Citation: Lieberthal B, Gardner AM (2021) Connectivity, reproduction number, and mobility interact to determine communities’ epidemiological superspreader potential in a metapopulation network. PLoS Comput Biol 17(3): e1008674. https://doi.org/10.1371/journal.pcbi.1008674

Funding: BL and AG were funded by National Science Foundation Coupled Natural-Human Systems award #1824961 (https://www.nsf.gov/pubs/2018/nsf18503/nsf18503.htm). AG was funded by USDA National Institute of Food and Agriculture, Hatch Project Number ME021826 through the Maine Agricultural and Forest Experiment Station. (https://nifa.usda.gov/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Media Contact
PLOS Computational Biology
[email protected]

Related Journal Article

http://dx.doi.org/10.1371/journal.pcbi.1008674

Tags: Algorithms/ModelsInfectious/Emerging DiseasesMathematics/StatisticsMedicine/HealthPublic Health
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Simulations reveal how dominant SARS-CoV-2 strain binds to host, succumbs to antibodies

April 16, 2021
IMAGE

Virginia Tech and UVA virologists develop broadly protective coronavirus vaccines

April 16, 2021

NIAID funds new influenza research network

April 14, 2021

How to build a city that prioritizes public health

April 14, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    60 shares
    Share 24 Tweet 15
  • Terahertz accelerates beyond 5G towards 6G

    852 shares
    Share 341 Tweet 213
  • A sturdier spike protein explains the faster spread of coronavirus variants

    44 shares
    Share 18 Tweet 11
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

University of WashingtonVaccineWeather/StormsVirusVirologyWeaponryVaccinesUrbanizationVehiclesUrogenital SystemZoology/Veterinary ScienceViolence/Criminals

Recent Posts

  • New amphibious centipede species discovered in Okinawa and Taiwan
  • USU researchers develop power converter for long-distance, underwater electric grids
  • The fate of the planet
  • The future of particle accelerators is here
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In