• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

New range of biosensors

Bioengineer by Bioengineer
December 18, 2014
in Bioengineering
Reading Time: 3 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from North Carolina State University have found a way of binding peptides to the surface of gallium nitride (GaN) in a way that keeps the peptides stable even when exposed to water and radiation. The discovery moves researchers one step closer to developing a new range of biosensors for use in medical and biological research applications.

New technique moves researchers closer to new range of biosensors

Dr. Albena Ivanisevic, senior author of a paper on the work and an associate professor of materials science and engineering at NC State.

GaN is a biocompatible material that fluoresces, or lights up, when exposed to radiation. Researchers are interested in taking advantage of this characteristic to make biosensors that can sense specific molecules, or “analytes,” in a biological environment.

To make a GaN biosensor, the GaN is coated with peptides – chains of amino acids that are chemically bound to the surface of the material. These peptides would respond to the presence of specific analytes by binding with the molecules.

The idea is that, when exposed to radiation, the intensity of the light emitted by the GaN would change, depending on the number of analytes bound to the peptides on the surface. This would allow researchers and clinicians to monitor the presence of different molecules in a biological system. But it’s not quite that simple.

“A key challenge in developing GaN biosensors has been finding a technique to bind the peptides to the GaN surface in a way that keeps the peptides stable when exposed to aqueous environments – like a cell – and to radiation,” says Dr. Albena Ivanisevic, senior author of a paper on the work and an associate professor of materials science and engineering at NC State. “Now we have done that.”

“We used a two-step process to bind the peptides,” explains Nora Berg, a Ph.D. student at NC State and lead author of the paper. “First we used a combination of phosphoric and phosphonic acids to etch the GaN and create a stable ‘cap’ on the surface. We were then able to attach the relevant peptides to the phosphonic acids in the cap.”

To determine the stability of the peptides, the researchers placed the coated GaN in an aqueous solution and then placed the solution in a “phantom material” that mimics animal tissue. The GaN, solution and phantom material were then exposed to high levels of radiation, beyond what would be expected in a clinical setting. The material was then evaluated to see if there was any degradation of the peptides or of the GaN itself.

“The peptides remained on the surface,” Berg says. “The aqueous solution caused an oxide layer to form on the surface but there is no indication that this would affect the functionality of the peptides.”

“Now that we’ve shown that this approach allows us to create functional, stable peptide coatings on this material, we’re moving forward to develop a particle configuration – which would be injectable,” Ivanisevic says. “This will open the door to in vitro testing of the material’s sensing capabilities.”

The paper, “Surface Characterization of Gallium Nitride Modified with Peptides Before and After Exposure to Ionizing Radiation in Solution,” was published online Dec. 5 in the journal Langmuir. The paper was co-authored by Dr. Michael Nolan, an assistant professor of radiation biology and oncology at NC State, and Dr. Tania Paskova, a research professor of electrical engineering at NC State.

Story Source:

The above story is based on materials provided by NC State University.

Share13Tweet8Share2ShareShareShare2

Related Posts

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Papillary Thyroid Cancer Surgery with AI

Key Factors Influencing School Dropout in Türkiye

MicroRNA-25-3p Boosts Pancreatic Cancer Progression via EVs

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.