• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New method to study biomechanical changes in tissues after laser surgery

Bioengineer by Bioengineer
January 9, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Although currently laser surgery is a very popular tool for various vision disorders correction, it is still difficult to ensure proper control over the accuracy, efficiency and safety of such procedures. Therefore, Russian scientists proposed a new method that helps to describe tissue changes after such operations. This method was described in a series of publications in the Journal of Biophotonics, Journal of Biomedical Optics and Laser Physics Letters.

For the widespread and safe clinical use of lasers for eye surgeries, it is crucial to ensure high-precision control of the given shape of the fabric and its stability. At the same time, it is important to evaluate the accompanying changes in the tissue microstructure and its mechanical properties after laser modification. One of the most promising methods for such applications is optical coherence tomography (OCT). OCT occupies a niche between medical ultrasound and optical microscopy as it can visualize the tissue structure by infrared light scattering, with a resolution of up to several micrones.

Russian researchers implemented OCT to investigate tissue deformations and mechanical properties changes. The study was conducted on samples of collagen tissue such as rabbit cornea and pig cartilage that were subjected to the procedures of localized thermomechanical modification by laser.

“We place the cornea or cartilage sample under investigation between two silicone layers with a known stiffness. Visualizing with the help of OCT the mechanically produced deformations in such a construction, it is possible to quantitatively map the distribution of the elastic modulus of the tissue under investigation, both before and after laser thermomechanical modification,” says Vladimir Zaytsev, Doctor of physical and mathematical sciences, Head of the laboratory of wave methods for studying structural- Heterogeneous media IAP RAS.

The results are in good agreement with the data obtained by various methods of microscopy and in theoretical computer simulations. However, optical coherent elastography does not require special preparation of the drug using dehydration, staining and other destructive procedures. The developed non-invasive elastographic approach can be used in medicine for the quick assessment of the long-term stability of cartilage implants prepared by laser reshaping, as well as for monitoring the procedures of thermomechanical cornea modification and various diagnostic studies.

“Preliminary results make it possible to count on the promise of using OCT-elastography to perform” optical biopsy “of tumor diseases, and not just to distinguish between tissue in the normal state and pathology,” concludes Vladimir Zaitsev.

###

Media Contact
Vladimir Zaytsev
[email protected]
http://dx.doi.org/10.1002/jbio.201800250

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyDiagnosticsMedicine/HealthOphthalmologySurgeryTransplantation
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Revolutionary Graph Network Enhances Protein Interaction Prediction

October 4, 2025
DOG Gene Family in Wheat Drives Seed Dormancy

DOG Gene Family in Wheat Drives Seed Dormancy

October 4, 2025

Discovery of MrSTP20: Sugar Transporter in Salt Stress

October 4, 2025

SNARE Neofunctionalization Driven by Vacuole Retrieval

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Carers in Australia: Blessings and Challenges Explored

Gut Microbiome and Hormones in Postmenopausal Breast Cancer

Herbal Remedies for Hypertension: Insights from Trinidad

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.