• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New materials of perovskite challenge the chemical intuition

Bioengineer by Bioengineer
June 30, 2020
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Changqing Jin, Institute of Physics, Chinese Academy of Sciences

High-pressure materials science has taken off over the last couple of decades with advances in previously difficult experimental techniques and from technologies such as diamond anvils, which squeeze samples of materials between two diamonds at pressures up to millions of times greater than that at the Earth’s surface.

The field uses these extreme conditions that mirror the deep interior of planets to discover new materials, to modify the properties of known materials in potentially useful and even exotic ways, and to test their concepts about how materials work or to simulate what it is like inside the Earth.

Meanwhile, perovskite is both the most abundant mineral in the Earth’s mantle (composed of calcium titanate, CaTiO3) and the name of any material that has the same, special crystal structure as this mineral. Perovskite structures are of great interest to materials scientists due to multiple interesting properties that are important in a range of microelectronics, telecommunications and clean-energy applications.

Using advanced high-pressure techniques, Professor Changqing Jin, who leads the research team at The Institute of Physics, Chinese Academy of Sciences, also adjunct to University of Chinese Academy of Sciences(UCAS) has been fabricating many new materials with perovskite structures and novel functionality for some time. Recently his lab has been synthesizing a new type of perovskite compound, called the ‘double perovskites,’ which has twice the ‘unit cell,’ or smallest possible building block of a crystal, of regular perovskites.

The findings were published in the peer-reviewed journal Angewandte Chemie published by Wiley.

The study details how the researchers exposed their latest double perovskite, composed of yttrium, cobalt, iridium and oxygen atoms (Y2CoIrO6), to varying levels of extreme pressure, and what happened when they did so.

For most materials, an increase in pressure allows for an increase in the number of atoms that can gather immediately around a central atom in a crystal (called the coordination number.

But the new double perovskite, Y2CoIrO6, did not adhere to the traditional theories that crystal structure order tends to increase with the increase of pressure.

Instead, when synthesized at ambient pressure, Y2CoIrO6 is highly ordered, but surprisingly when synthesized at 6 gigapascals (GPa, or roughly 60,000 times standard atmospheric pressure), while the unit cell did get smaller, now there was only partial ordering.

Then at 15 GPa, the researchers found disordering. Increasing pressure had inverted the normal order-to-disorder sequence that the researchers expected. In addition, the magnetic properties of the material changed

“Curiously, 15 GPa is also the pressure that you find at the boundary region between the upper and lower mantle deep in the Earth,” said Zheng Deng, another member of the team. “This is precisely where many perovskite materials form.”

Gaining further insight into this unexpected pressure-dependent order-disorder transition could help scientists to better understand the properties of minerals that make up the mantle and deeper interior of our planet

“This violates our intuition about chemistry at high pressures,” Deng continued. “It means we’re going to have to entirely reconsider the effects of pressure in solid-state sciences”

The discovery could permit design and synthesis of useful new materials at high pressures with attributes that would otherwise be hard to achieve under normal
conditions.

###

Other contributors include Martha Greenblatt at the Department of Chemistry and Chemical Biology at Rutgers, the State University of New Jersey; Chang-Jong Kang, Mark Croft and Gabriel Kotliar from the Department of Physics and Astronomy at Rutgers at the State University of New Jersey.

Media Contact
Changqing JIN
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/anie.202001922

Tags: Atomic PhysicsChemistry/Physics/Materials SciencesElectromagneticsEnergy/Fuel (non-petroleum)GeophysicsMaterialsNanotechnology/MicromachinesOpticsPolymer ChemistrySuperconductors/Semiconductors
Share13Tweet8Share2ShareShareShare2

Related Posts

Mpox Virus Impact in SIVmac239-Infected Macaques

Mpox Virus Impact in SIVmac239-Infected Macaques

August 17, 2025
Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

August 17, 2025

Seismic Analysis of Masonry Facades via Imaging

August 16, 2025

Pediatric Pharmacogenomics: Preferences Revealed by Choice Study

August 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mpox Virus Impact in SIVmac239-Infected Macaques

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

Seismic Analysis of Masonry Facades via Imaging

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.