• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, February 28, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

New malaria mosquito is emerging in African cities

Bioengineer by Bioengineer
January 27, 2021
in Immunology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new urban mosquito is widespread in the Horn of Africa and is highly susceptible to local malaria parasites

IMAGE

Credit: Radboudumc

Larvae of a new malaria mosquito species are abundantly present in water containers in cities in Ethiopia. The mosquito, Anopheles stephensi, is the main malaria mosquito in India but only appeared on the African continent a few years ago. It has now been found in cities and towns in urban settings in Ethiopia, Sudan, and Djibouti. Researchers from the Radboud university medical center and the Armauer Hansen Research Institute in Ethiopia showed that the invading mosquito species is highly susceptible to local malaria strains. Malaria can therefore become an increasing problem for urban areas in Ethiopia and elsewhere in Africa.

In Africa, malaria is traditionally been a rural disease with towns and cities associated with much lower levels or absence of malaria. This is due to the fact that most African malaria mosquitoes breed in rural areas. However, the introduction of Anopheles stephensi may increase the malaria risk for urban populations. Over recent years there have been increasing reports of the Asian mosquito species Anopheles stephensi in the Horn of Africa. Anopheles stephensi can reproduce particularly well in man-made containers with clean water. This makes Anopheles stephensi a notorious mosquito species for urban malaria

The Asian mosquito appears to be particularly susceptible to African malaria

A mosquito species only poses a health risk if it can spread local malaria parasites. “That is why we performed mosquito feeding experiments with the blood of Ethiopian malaria patients. This allowed us to determine whether the local malaria parasite can develop in the new mosquito,” explains Professor of Epidemiology of Tropical Infectious Diseases Teun Bousema of Radboud university medical center in Nijmegen. “To our surprise, the Asian mosquito turned out to be even more susceptible to local malaria parasites than our Ethiopian mosquito colony. This mosquito appears to be an extremely efficient spreader of the two main species of malaria”.

With this important puzzle piece, concerns about urban malaria in Africa are increasing. In 2019, the World Health Organization (WHO) already sounded the alarm about the possible consequences of the invasion of Anopheles stephensi in Africa. With this new findings, these concerns seem justified. “An aggressive approach to target this mosquito is now a top priority,” concludes dr. Fitsam Tadesse. “Only if we act quickly can we prevent the spread to other urban areas on the continent. We must target the mosquito larvae in places where they now occur and prevent mosquitoes from spreading over long distances, for example via airports and sea ports. If that fails, the risk of urban malaria will rise in large parts of Africa.”

About malaria

With approximately 216 million cases and 400,000 deaths per year, malaria is one of the most important infectious diseases of our time. Compared to the situation before the year 2000, there is a clear decrease in the number of sick people, especially in Sub-Saharan Africa and South America. Unfortunately, malaria now seems to be on the rise in several areas where it was previously under control. Plasmodium falciparum and Plasmodium vivax are the main types of malaria for humans. They are transmitted to humans by mosquitoes and vice versa. There are about 60 mosquito species that can transmit human malaria. In Africa, a number of mosquito species are traditionally responsible for the most malaria transmission. Anopheles gambiae mosquitoes have been labeled the most dangerous animal species on earth and are especially common in rural settings in Africa. Spraying with Insecticides and the use of impregnated mosquito netting against mosquitoes are among the most effective ways to combat malaria. Since 2015, a vaccine has been registered for use. This vaccine, Mosquirix, offers some protection against Plasmodium falciparum malaria, the deadliest form of malaria. Preventing the spread of malaria is considered one of the greatest challenges in the fight against malaria.

###

Media Contact
Pauline Dekhuijzen
[email protected]

Original Source

https://wwwnc.cdc.gov/eid/article/27/2/20-0019-f2

Related Journal Article

http://dx.doi.org/10.3201/eid2702.200019

Tags: EpidemiologyInfectious/Emerging DiseasesMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Research reveals how bacteria defeat drugs that fight cystic fibrosis

February 26, 2021
IMAGE

Lethal house lures reduce incidence of malaria in children

February 26, 2021

Openly available toolkit to help lab-based coronavirus research

February 25, 2021

NIH awards UC San Diego $33 million for five COVID-19 diagnostic projects

February 25, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    638 shares
    Share 255 Tweet 160
  • People living with HIV face premature heart disease and barriers to care

    82 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Technology/Engineering/Computer ScienceMedicine/HealthcancerInfectious/Emerging DiseasesEcology/EnvironmentMaterialsCell BiologyClimate ChangeBiologyGeneticsPublic HealthChemistry/Physics/Materials Sciences

Recent Posts

  • Predicts the onset of Alzheimer’s Disease (AD) using deep learning-based Splice-AI
  • When foams collapse (and when they don’t)
  • UTA researcher explores effects of trauma at the cellular, tissue levels of the brain
  • Picture books can boost physical activity for youth with autism
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In