• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, January 29, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

New light-controlled gel makes big strides in soft robotics

Bioengineer by Bioengineer
October 29, 2013
in Bioengineering, Headlines
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Inspired by the way plants grow toward light sources, a phenomenon known as phototropism, bioengineers from the University of California, Berkeley have created a hydrogel that could be manipulated by light.

gel

The new hydrogel, described earlier this month in the journal Nano Letters, could have future applications in the emerging field of soft robotics, which takes a cue from squishy creatures in nature, like starfish, squids and octopuses, to create flexible components.

“Shape-changing gels such as ours could have applications for drug delivery and tissue engineering,” said study principal investigator Seung-Wuk Lee, associated professor of bioengineering.

Researchers combined synthetic, elastic proteins with sheets of graphene, one-atom thick carbon sheets that stack to form graphite. Graphite is the same material used in pencil lead. The graphene sheets generate heat when exposed to near infrared light. That heat affects the synthetic proteins, which absorb water when cooled and release it when hot.

The two materials together formed the nanocomposite biopolymer, or hydrogel, which was designed so that one side was more porous than the other. The side that was more porous allowed a faster absorption and release of water than the other side.

“By combining these materials, we were able to mimic the way plant cells expand and shrink in response to light in a much more precisely controlled manner,” said Lee. “Because the gels shrank unevenly, the material bent when the light hit it. We used these bending motions to demonstrate a hand-shaped hydrogel that exhibited joint-like articulation when exposed to light.”

Other study authors are Eddie Wang and Malav Desai, both graduate students in bioengineering.

Story Source:

The above story is reprinted from materials provided by News Berkeley University, Sarah Yang.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

October 28, 2022
blank

Chlorinated lipids predict lung injury and death in sepsis patients

January 31, 2018

Major research initiative explores how our bones and muscles age, new ways to block their…

January 31, 2018

Gene that enables memories, sense of direction produces schizophrenia-like symptoms when mutated

January 31, 2018
Please login to join discussion

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

World-first guidelines created to help prevent heart complications in children during cancer treatment

Simulations reproduce complex fluctuations in soft X-ray signal detected by satellites

Measles virus ‘cooperates’ with itself to cause fatal encephalitis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In