• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

New formula better predicts speed of tumor growth in 12 cancers

Bioengineer by Bioengineer
April 3, 2019
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Current methods can overestimate cancer growth, which hinders clinicians’ ability to schedule screenings, plan treatment

BUFFALO, N.Y. – University at Buffalo researchers have developed a new method to more accurately predict tumor growth rates, a crucial statistic used to schedule screenings and set dosing regimens in cancer treatment.

The mathematical method successfully estimated the doubling time — the amount of time for a tumor to double in size — for 12 types of cancer, ranging from breast and prostate cancers to melanoma.

The research, published in February in the AAPS Journal, was led by Dhaval Shah, PhD, associate professor in the UB School of Pharmacy and Pharmaceutical Sciences.

“This novel method allows clinicians and drug development scientists to use routinely-generated clinical data to infer doubling times of solid tumors. This parameter can be used to design individualized dosing regimens and develop reliable models for anticancer therapeutics,” says Shah.

Tumor doubling time can significantly affect the outcome of anticancer therapy, but the rate is challenging to determine. Current methods calculate doubling time by measuring the size of a tumor at two points in time and assuming the cancer will grow at an exponential rate.

However, most doubling times calculated using this method are overestimated, and tiny changes in tumor size can make determining growth rates difficult.

The error impacts the ability of clinicians to schedule optimal follow-up screenings, set effective dosing regimens, and determine whether surgery, chemotherapy or radiation therapy is the best form of treatment.

The UB researchers instead base their method on data extracted from progression-free survival plots — the length of time during and after treatment that a cancer does not grow or spread.

Progression-free survival plots, explains Shah, inherently contain information that could help identify tumor growth rates.

The investigators examined data from 47 clinical trials that reported plots for any of 12 cancer types: melanoma; pancreatic, lung, prostate, gastric, colorectal and three forms of breast cancer; hepatocellular (liver) and renal cell (kidney) carcinoma; and glioblastoma multiforme (brain).

The cancer growth rates predicted by the researchers using progression-free survival plots were within close range to the reported actual tumor doubling times.

###

Additional School of Pharmacy and Pharmaceutical Sciences co-authors include Robert Bies, PharmD, PhD, associate professor; Katherine Kay, PhD, former postdoctoral fellow; and former student Keith Dolcy, PharmD.

Media Contact
Marcene Robinson
[email protected]
http://www.buffalo.edu/news/releases/2019/04/004.html

Tags: Breast CancercancerMedicine/HealthPharmaceutical SciencePharmaceutical SciencesProstate Cancer
Share12Tweet8Share2ShareShareShare2

Related Posts

WNT Signaling: Evolutionary Roots and Cancer Links

WNT Signaling: Evolutionary Roots and Cancer Links

August 20, 2025
Plant-Based Diets Linked to Lower Risk of Multimorbidity, New Study Finds

Plant-Based Diets Linked to Lower Risk of Multimorbidity, New Study Finds

August 20, 2025

Malignant Neoplasm Trends in Kashi Hospitals Analyzed

August 20, 2025

Red Cell Indices Predict Cancer Risk: Study

August 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Harnessing Positive Externalities for Multidimensional Resilience

WNT Signaling: Evolutionary Roots and Cancer Links

12th Heidelberg Laureate Forum Kicks Off on September 14

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.