• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 9, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New catalyst moves seawater desalination, hydrogen production closer to commercialization

Bioengineer by Bioengineer
January 28, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Fast, one-step assembly at room temperature yields high efficiency at low cost

IMAGE

Credit: University of Houston

Seawater makes up about 96% of all water on earth, making it a tempting resource to meet the world’s growing need for clean drinking water and carbon-free energy. And scientists already have the technical ability to both desalinate seawater and split it to produce hydrogen, which is in demand as a source of clean energy.

But existing methods require multiple steps performed at high temperatures over a lengthy period of time in order to produce a catalyst with the needed efficiency. That requires substantial amounts of energy and drives up the cost.

Researchers from the University of Houston have reported an oxygen evolving catalyst that takes just minutes to grow at room temperature on commercially available nickel foam. Paired with a previously reported hydrogen evolution reaction catalyst, it can achieve industrially required current density for overall seawater splitting at low voltage. The work is described in a paper published in Energy & Environmental Science.

Zhifeng Ren, director of the Texas Center for Superconductivity at UH (TcSUH) and corresponding author for the paper, said speedy, low-cost production is critical to commercialization.

“Any discovery, any technology development, no matter how good it is, the end cost is going to play the most important role,” he said. “If the cost is prohibitive, it will not make it to market. In this paper, we found a way to reduce the cost so commercialization will be easier and more acceptable to customers.”

Ren’s research group and others have previously reported a nickel-iron-(oxy)hydroxide compound as a catalyst to split seawater, but producing the material required a lengthy process conducted at temperatures between 300 Celsius and 600 Celsius, or as high as 1,100 degrees Fahrenheit. The high energy cost made it impractical for commercial use, and the high temperatures degraded the structural and mechanical integrity of the nickel foam, making long-term stability a concern, said Ren, who also is M.D. Anderson Professor of physics at UH.

To address both cost and stability, the researchers discovered a process to use nickel-iron-(oxy)hydroxide on nickel foam, doped with a small amount of sulfur to produce an effective catalyst at room temperature within five minutes. Working at room temperature both reduced the cost and improved mechanical stability, they said.

“To boost the hydrogen economy, it is imperative to develop cost-effective and facile methodologies to synthesize NiFe-based (oxy)hydroxide catalysts for high-performance seawater electrolysis,” they wrote. “In this work, we developed a one-step surface engineering approach to fabricate highly porous self-supported S-doped Ni/Fe (oxy)hydroxide catalysts from commercial Ni foam in 1 to 5 minutes at room temperature.”

In addition to Ren, co-authors include first author Luo Yu and Libo Wu, Brian McElhenny, Shaowei Song, Dan Luo, Fanghao Zhang and Shuo Chen, all with the UH Department of Physics and TcSUH; and Ying Yu from the College of Physical Science and Technology at Central China Normal University.

Ren said one key to the researchers’ approach was the decision to use a chemical reaction to produce the desired material, rather than the energy-consuming traditional focus on a physical transformation.

“That led us to the right structure, the right composition for the oxygen evolving catalyst,” he said.

###

Media Contact
Jeannie Kever
[email protected]

Original Source

https://uh.edu/news-events/stories/2021/january-2021/01272021ren-seawater-catalyst.php

Tags: Chemistry/Physics/Materials SciencesClimate ChangeEnergy/Fuel (non-petroleum)MaterialsPollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Research pinpoints unique drug target in antibiotic resistant bacteria

March 8, 2021
IMAGE

How fast is the universe expanding? Galaxies provide one answer.

March 8, 2021

Lights on for silicon photonics

March 8, 2021

Cheap, nontoxic carbon nanodots poised to be quantum dots of the future

March 8, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    703 shares
    Share 281 Tweet 176
  • People living with HIV face premature heart disease and barriers to care

    86 shares
    Share 34 Tweet 22
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9
  • Global analysis suggests COVID-19 is seasonal

    39 shares
    Share 16 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Chemistry/Physics/Materials SciencesInfectious/Emerging DiseasesGeneticsTechnology/Engineering/Computer SciencecancerPublic HealthMedicine/HealthEcology/EnvironmentBiologyCell BiologyMaterialsClimate Change

Recent Posts

  • Research pinpoints unique drug target in antibiotic resistant bacteria
  • How fast is the universe expanding? Galaxies provide one answer.
  • Young white-tailed deer that disperse survive the same as those that stay home
  • Complement inhibition reverses mental losses in preclinical traumatic brain injury models
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In