• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New catalyst could enable better lithium-sulfur batteries, power next-gen electronics

Bioengineer by Bioengineer
February 22, 2021
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Novel catalyst material promises long-lasting, high-capacity, next-generation rechargeable batteries

IMAGE

Credit: Gwangju Institute of Science and Technology

At the heart of most electronics today are rechargeable lithium-ion batteries (LIBs). But their energy storage capacities are not enough for large-scale energy storage systems (ESSs). Lithium-sulfur batteries (LSBs) could be useful in such a scenario due to their higher theoretical energy storage capacity. They could even replace LIBs in other applications like drones, given their light weight and lower cost.

But the same mechanism that is giving them all this power is keeping them becoming a widespread practical reality. Unlike LIBs, the reaction pathway in LSBs leads to an accumulation of solid lithium sulfide (Li2S6) and liquid lithium polysulfide (LiPS), causing a loss of active material from the sulfur cathode (positively charged electrode) and corrosion of the lithium anode (negatively charged electrode). To improve battery life, scientists have been looking for catalysts that can make this degradation efficiently reversible during use.

In a new study published in ChemSusChem, scientists from Gwangju Institute of Technology (GIST), Korea, report their breakthrough in this endeavor. “While looking for a new electrocatalyst for the LSBs, we recalled a previous study we had performed with cobalt oxalate (CoC2O4) in which we had found that negatively charged ions can easily adsorb on this material’s surface during electrolysis. This motivated us to hypothesize that CoC2O4 would exhibit a similar behavior with sulfur in LSBs as well,” explains Prof. Jaeyoung Lee from GIST, who led the study.

To test their hypothesis, the scientists constructed an LSB by adding a layer of CoC2O4 on the sulfur cathode.

Sure enough, observations and analyses revealed that CoC2O4‘s ability to adsorb sulfur allowed the reduction and dissociation of Li2S6 and LiPS. Further, it suppressed the diffusion of LiPS into the electrolyte by adsorbing LiPS on its surface, preventing it from reaching the lithium anode and triggering a self-discharge reaction. These actions together improved sulfur utilization and reduced anode degradation, thereby enhancing the longevity, performance, and energy storage capacity of the battery.

Charged by these findings, Prof. Lee envisions an electronic future governed by LSBs, which LIBs cannot realize. “LSBs can enable efficient electric transportation such as in unmanned aircrafts, electric buses, trucks and locomotives, in addition to large-scale energy storage devices,” he observes. “We hope that our findings can get LSBs one step closer to commercialization for these purposes.”

Perhaps, it’s only a matter of time before lithium-sulfur batteries power the world.

###

About Gwangju Institute of Science and Technology (GIST)

Gwangju Institute of Science and Technology (GIST) is a research-oriented university situated in Gwangju, South Korea. One of the most prestigious schools in South Korea, it was founded in 1993. The university aims to create a strong research environment to spur advancements in science and technology and to promote collaboration between foreign and domestic research programs. With its motto, “A Proud Creator of Future Science and Technology,” the university has consistently received one of the highest university rankings in Korea.

Website: http://www.gist.ac.kr/

About the author

Dr. Jaeyoung Lee obtained his doctoral degree in Physical Electrochemistry from the Fritz-Haber-Institut der MPG & Fu Berlin, Germany, in 2001 under Dr. Gerhard Ertl, a 2007 Nobel Laureate. He is now a Professor in the School of Earth Sciences and Environmental Engineering and Vice Director of the Ertl Center for Electrochemistry and Catalysis at the Gwangju Institute of Science and Technology (GIST), Korea. He is interested in the designing, synthesis, and application of electrocatalysts for various energy and environmental sectors.

Media Contact
Nayeong Lee
[email protected]

Original Source

https://www.gist.ac.kr/en/html/sub06/060202.html?mode=V&no=199236

Related Journal Article

http://dx.doi.org/10.1002/cssc.202002140

Tags: Biomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsEnergy/Fuel (non-petroleum)Industrial Engineering/ChemistryMaterialsPolymer ChemistrySuperconductors/SemiconductorsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Exploring Enterococcus faecium Infections in Mexican Children

September 22, 2025
blank

Enhanced Copper Detection with Iron Oxide-Graphite Sensors

September 22, 2025

Micro-LEDs Drive Transparent, Free-Form, Near-Eye Displays

September 22, 2025

Key Drivers of Corporate Governance in Burundi’s Cooperatives

September 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Enterococcus faecium Infections in Mexican Children

Enhanced Copper Detection with Iron Oxide-Graphite Sensors

Micro-LEDs Drive Transparent, Free-Form, Near-Eye Displays

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.