• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New brain sensor offers Alzheimer’s answers

Bioengineer by Bioengineer
March 9, 2021
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Dan Addison | UVA Communications

Scientists at the University of Virginia School of Medicine have developed a tool to monitor communications within the brain in a way never before possible, and it has already offered an explanation for why Alzheimer’s drugs have limited effectiveness and why patients get much worse after going off of them.

The researchers expect their new method will have tremendous impact on our understanding of depression, sleep disorders, autism, neurological diseases and major psychiatric conditions. It will speed scientific research into the workings of the brain, they say, and facilitate the development of new treatments.

“We can now ‘see’ how brain cells communicate in sharp detail in both the healthy and diseased brains,” said lead researcher J. Julius Zhu, PhD, of UVA’s Department of Pharmacology.

Unexpected Transmissions

The new method developed by Zhu and his collaborators lets scientists examine transmissions inside the brain at both the microscopic level and the far, far smaller nanoscopic level. It combines a biological “sensor” with two different forms of cutting-edge imaging.

The approach can quantify “neuromodulatory” transmissions, which are associated with major brain disorders, including addiction, Alzheimer’s, depressive disorders and schizophrenia. They’re also linked to autism, epilepsy, eating disorders and sleep disorders.

Neuromodulatory transmissions are the “slower” transmissions in the brain. They’re typically thought to involve lots of neurons in large regions. That’s in contrast to the much faster transmissions that happen neuron-to-neuron.

But Zhu’s new tool has already shown it’s not that simple.

In Alzheimer’s disease, Zhu and his colleagues discovered a surprising degree of “fine control and precision” in the supposedly shotgun neuromodulatory transmissions. Widely used Alzheimer’s drugs known as acetylcholinesterase inhibitors may inhibit this precise communication, the scientists report. That may explain the limited effectiveness of the drugs, they say.

The researchers went on to identify potential changes in the brain that could be brought about by long-term use of the drugs, which could explain why patients often get much worse when they stop taking them. “The new method points out Alzheimer’s defects in the unprecedented spatial and temporal resolution, defining the precise targets for medicine,” Zhu said.

Alzheimer’s, the researchers say, is just the tip of the iceberg. The new system has “broad applicability” across the spectrum of neurological and psychiatric diseases and disorders, they report. In the years to come, the scientists predict, it will help doctors understand neurological illnesses and psychiatric problems, screen drugs for potential treatments, identify disease-causing genes and develop better, more personalized medicine tailored for specific patient needs.

“If we see problems,” Zhu said, “we will be ready to treat them.”

###

Results Published

The researchers have described new approach and their findings in the scientific journal Molecular Psychiatry. The research teams consisted of Li Lin, Smriti Gupta, W. Sharon Zheng, Ke Si and Zhu, and Paula K. Zhu, W. Sharon Zheng, Peng Zhang, Miao Jing, Philip M. Borden, Farhan Ali, Kaiming Guo, Jiesi Feng, Jonathan S. Marvin, Yali Wang, Jinxia Wan, Li Gan, Alex C. Kwan, Li Lin, Loren L. Looger, Yulong Li and Yajun Zhang.

To keep up with the latest medical research news from UVA, subscribe to the Making of Medicine blog

Media Contact
Josh Barney
[email protected]

Original Source

https://newsroom.uvahealth.com/2021/03/08/new-brain-sensor-offers-alzheimers-answers/

Related Journal Article

http://dx.doi.org/10.1038/s41380-020-00960-8

Tags: AlzheimerMedicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Oncolytic Virus Shows Promise in Pediatric Brain Tumors

July 31, 2025
Mitochondrial Dysfunction Links Metabolism to Parkinson’s via Epigenetics

Mitochondrial Dysfunction Links Metabolism to Parkinson’s via Epigenetics

July 31, 2025

Monitoring Kidney Oxygenation in Preterm Neonates Using NIRS

July 31, 2025

How Metformin Effectively Lowers Blood Sugar Levels

July 31, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    59 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    35 shares
    Share 14 Tweet 9
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Neuromorphic Processor Enables On-Chip Learning Beyond CMOS

Oncolytic Virus Shows Promise in Pediatric Brain Tumors

Mitochondrial Dysfunction Links Metabolism to Parkinson’s via Epigenetics

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.