• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

New alternate cell growth pathway could lead to better treatments for metastatic cancers

Bioengineer by Bioengineer
July 11, 2019
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

While researchers have a basic understanding of how primary cancer cells grow, less is known about metastasis, the deadly process by which cancers spread. A team led by Dr. Paul Krebsbach, dean of UCLA’s School of Dentistry and professor of periodontics, has found that mEAK-7, a gene they discovered last year, may play a significant role in cancer metastasis, at least in lung cancers.

Building on that earlier gene discovery in human cells, the team compared mEAK-7 expression levels in normal and cancer cells using tumor cell genetic information from several databases as well as tissue samples from cancer patients.

“By focusing on non-small cell lung cancer, we found that mEAK-7, which is important for cell proliferation and migration, was highly expressed in metastatic non-small cell lung cancer,” said Dr. Joe Nguyen, first author and postdoctoral scholar at the National Cancer Institute. “We also discovered that mEAK-7 was expressed in primary cancer cells but not expressed in non-cancerous cells, which shows that the protein could be a key culprit in cancer metastasis.”

The research was published in the journal iScience.

The researchers also found that mEAK-7, when combined with a large molecule called DNA-PKcs (which helps regulate DNA repair and controls or enhances cancer growth), created an alternative mTOR signaling pathway used by cancer cells for their growth and proliferation. In normal cells, two well-studied pathways are controlled by a gene called mTOR, which regulates normal cell growth, proliferation and survival.

“This third complex or pathway is very important for cancer stem cells, which begin the process of colony formation and cell proliferation, and lead to metastasis that is the leading cause of death in most cancers,” Krebsbach said. “We determined that there are high mEAK-7 protein levels in the tumors and lymph nodes of metastatic cancer patients. Development of mEAK-7 inhibitors may benefit patients with metastatic cancers that demonstrate aberrant mTOR signaling associated with high levels of mEAK-7.”

The researchers, who also looked at these signaling molecules in cancer stem cells, determined that the novel, “third” mTOR complex in cancer cells was made up of mTOR, mEAK-7 and DNA-PKcs.

“Understanding the molecular interactions of metastatic cancer is crucial to determining treatments for cancer at these later stages,” said Jin Koo Kim, co-author and a UCLA Dentistry project scientist. “Currently, treatments for solid tumors include surgery and radiation therapies. However, many patients relapse, as the target tumors develop resistance to radiation and other treatments. This study found that this resistance is correlated to higher mEAK-7 expression in cancer cells.”

###

Additional study authors are Fatima Haidar, Alexandra Fox, Connor Ray and Daniela Mendonça, all from the University of Michigan.

The study was supported in part by the National Institute of Dental and Craniofacial Research, and the Stuart and Barbara Padnos Research Award from the Rogel Cancer Center at the University of Michigan. The authors have no competing interests to declare.

Media Contact
Brianna Aldrich
[email protected]

Tags: cancerCell BiologyDentistry/Periodontal DiseaseGeneticsMedicine/Health
Share12Tweet7Share2ShareShareShare1

Related Posts

Misconceptions Prevent Certain Cancer Patients from Accessing Hormone Therapy Benefits

Misconceptions Prevent Certain Cancer Patients from Accessing Hormone Therapy Benefits

September 10, 2025

Scientists Discover Giant DNA Hidden Within the Human Mouth

September 10, 2025

Sociodemographics Affect Quality of Life Post-Prostatectomy

September 10, 2025

Blood Test Detects HPV-Linked Head and Neck Cancers Up to a Decade Before Symptoms Appear

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    52 shares
    Share 21 Tweet 13
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Blood Transfusions Increase Bronchopulmonary Dysplasia Risk in Preemies

Modular Organocatalysis Creates BN Isosteres via Wolff Rearrangement

Critically Endangered Shark Meat Frequently Sold Under False Labels in US, Study Finds

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.