• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, February 5, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Neural engineer Qi Wang recognized with NSF CAREER Award

Bioengineer by Bioengineer
March 8, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

He is working to develop new technologies for restoring and enhancing sensory functions and cognition through brain-machine interfaces

IMAGE

Credit: Jane Nisselson/Columbia Engineering

New York, NY–March 05, 2019–Qi Wang, assistant professor of biomedical engineering at Columbia Engineering, has won a CAREER award from the National Science Foundation, one of the highest honors given to young faculty. The five-year $500,000 grant will support his project, “Enhancing perception and cognition while minimizing side effects through closed-loop peripheral neural stimulation.”

Wang studies how sensory information is processed in the brain to form perception and inform an optimal decision, and how this process is modulated by behavioral states, such as attention and arousal. An expert in deciphering the neural codes that underlie our perception and cognition, he is working to develop new technologies for restoring and enhancing sensory functions and cognition through brain-machine interfaces (BMI).

“Perception, cognition, and behavioral performance depend heavily on arousal level,” he explains. “My NSF project is built upon a novel idea: using peripheral neural stimulation to control arousal level to achieve optimal behavioral performance with minimal side effects. I believe this is the first use of an engineering framework to guide the design and validation of optimal, closed-loop neural stimulation for enhancing behavior.”

Wang’s research has long been focused on the locus coeruleus (LC), which plays a pivotal role in modulating brain functions through its regulation of arousal levels. The LC is the primary source of norepinephrine (NE) and scientists think that decreases in NE levels in the brain when the LC is damaged may underlie many neuropsychiatric disorders and neurodegenerative diseases, including Alzheimer’s, ADHD, schizophrenia, autism, and depression. But because the LC is so small and located so deeply within the brainstem, it has been a major challenge to access it safely and to manipulate its activity.

In an ideal world, neural stimulation technology would effectively elicit intended activity in targeted structures while minimizing effects on non-targeted structures. Many previous simulation and experimental results, including Wang’s, have demonstrated that neural responses are sensitive to certain parameters of the stimulus, but finding the optimal stimulus has been very difficult due to the high dimensionality of neural stimulation parameter space.

For his NSF project, Wang proposes to use a safe alternative–vagus nerve stimulation (VNS)–to control LC activity without directly interfacing with the LC.

“There has been a clear lack of an engineering framework to guide the design of VNS stimuli to selectively drive targeted neural structures and to validate this technology in a real-world setting,” he observes. “An ideal neural stimulation technology should allow the system to effectively elicit intended activity in targeted structures while minimizing effects on non-targeted structures.”

With expertise in neuroscience, electrophysiology, control engineering, and behavioral paradigms–and now with the NSF CAREER award–Wang is positioned to create a hybrid computational-experimental framework that specifically focuses on using VNS to enhance behavioral performance with minimal side effects and to enhance human perception, cognition, and behavioral performance using neural stimulation.

###

Media Contact
Holly Evarts
[email protected]

Original Source

https://engineering.columbia.edu/news/qi-wang-nsf

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyMedicine/HealthneurobiologyTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Are Returning Pumas Threatening Patagonian Penguins? New Study Uncovers the Risks

February 5, 2026
Burn Injuries: A Crucial Factor in Shaping Human Evolution, Study Reveals

Burn Injuries: A Crucial Factor in Shaping Human Evolution, Study Reveals

February 5, 2026

Enhanced IVF Success: Innovative Transparent Culture Dishes Boost Embryo Selection Accuracy

February 4, 2026

Dog Behavior Traits Connected to Salivary Cortisol Levels and Serotonin Activity

February 4, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    81 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Muscle Synergy Adjustments Aid Stability in Older Adults

Enhancing Teamwork in Acute Care: A Mixed-Methods Study

Master Life-Saving CPR Techniques at Super Bowl LX: A Must-Know Guide for Science Enthusiasts

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.