• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Neural engineer Qi Wang recognized with NSF CAREER Award

Bioengineer by Bioengineer
March 8, 2019
in Biology
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

He is working to develop new technologies for restoring and enhancing sensory functions and cognition through brain-machine interfaces

IMAGE

Credit: Jane Nisselson/Columbia Engineering

New York, NY–March 05, 2019–Qi Wang, assistant professor of biomedical engineering at Columbia Engineering, has won a CAREER award from the National Science Foundation, one of the highest honors given to young faculty. The five-year $500,000 grant will support his project, “Enhancing perception and cognition while minimizing side effects through closed-loop peripheral neural stimulation.”

Wang studies how sensory information is processed in the brain to form perception and inform an optimal decision, and how this process is modulated by behavioral states, such as attention and arousal. An expert in deciphering the neural codes that underlie our perception and cognition, he is working to develop new technologies for restoring and enhancing sensory functions and cognition through brain-machine interfaces (BMI).

“Perception, cognition, and behavioral performance depend heavily on arousal level,” he explains. “My NSF project is built upon a novel idea: using peripheral neural stimulation to control arousal level to achieve optimal behavioral performance with minimal side effects. I believe this is the first use of an engineering framework to guide the design and validation of optimal, closed-loop neural stimulation for enhancing behavior.”

Wang’s research has long been focused on the locus coeruleus (LC), which plays a pivotal role in modulating brain functions through its regulation of arousal levels. The LC is the primary source of norepinephrine (NE) and scientists think that decreases in NE levels in the brain when the LC is damaged may underlie many neuropsychiatric disorders and neurodegenerative diseases, including Alzheimer’s, ADHD, schizophrenia, autism, and depression. But because the LC is so small and located so deeply within the brainstem, it has been a major challenge to access it safely and to manipulate its activity.

In an ideal world, neural stimulation technology would effectively elicit intended activity in targeted structures while minimizing effects on non-targeted structures. Many previous simulation and experimental results, including Wang’s, have demonstrated that neural responses are sensitive to certain parameters of the stimulus, but finding the optimal stimulus has been very difficult due to the high dimensionality of neural stimulation parameter space.

For his NSF project, Wang proposes to use a safe alternative–vagus nerve stimulation (VNS)–to control LC activity without directly interfacing with the LC.

“There has been a clear lack of an engineering framework to guide the design of VNS stimuli to selectively drive targeted neural structures and to validate this technology in a real-world setting,” he observes. “An ideal neural stimulation technology should allow the system to effectively elicit intended activity in targeted structures while minimizing effects on non-targeted structures.”

With expertise in neuroscience, electrophysiology, control engineering, and behavioral paradigms–and now with the NSF CAREER award–Wang is positioned to create a hybrid computational-experimental framework that specifically focuses on using VNS to enhance behavioral performance with minimal side effects and to enhance human perception, cognition, and behavioral performance using neural stimulation.

###

Media Contact
Holly Evarts
[email protected]

Original Source

https://engineering.columbia.edu/news/qi-wang-nsf

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyMedicine/HealthneurobiologyTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Both Parents’ Genes Shape Wolbachia Effects in Beetles

July 30, 2025
Unraveling Genomic Evolution in Marine Intertidal Limpets

Unraveling Genomic Evolution in Marine Intertidal Limpets

July 30, 2025

Processing Environments Shape Food-Related Antibiotic Resistome

July 30, 2025

Multi-Proteomic Analysis Reveals Host Risks in VZV

July 30, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    59 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Respiratory Viruses Reactivate Dormant Breast Cancer

Urine vs Stool Gluten Peptides: Tracking Diet Compliance

Unraveling Genetic Risks: Time-Varying Causal Mediation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.