• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Natural-based antibiofilm and antimicrobial peptides from microorganisms

Bioengineer by Bioengineer
January 2, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

This article by Dr. Serkan Ortucu et al. is published in Current Topics in Medicinal Chemistry, 2018.

New developments in antimicrobial peptides (AMPs) with antibiofilm properties are rapidly materializing. ABP works by inhibiting antibiotic resistant bacteria in the biofilm through nucleotide signaling molecules.

Antimicrobial peptides and antibiofilm peptide (ABP) are new antibiotic molecules derived from microorganisms for the treatment of infections. The authors have discussed significance, limitations and trials of these antimicrobial peptides from bacteria, fungi, protozoa and yeast.

These antimicrobial peptides are small, cationic and amphipathic polypeptide sequences with a wide range for Gram-positive and Gram-negative bacteria, viruses and fungi with 6-100 amino acids in length. These sources are reviewed in detail showing characterization of these antimicrobial peptides and their respective classes.

The APD3 database showed 333 bacteriocin and peptide antibiotics from bacteria, 4 from
archaea, 8 from protists, 13 from fungi are reported. Bacterial AMP are characterized according to their amino acid numbers and are so small in size with 1-5 kDa mass as compared to Class II AMPs are longer with amino acid number is about 25-50.

Class II bacteriocins are composed of homogeneous amino acids and classified into different groups based on their secondary structure. Class II Lactococcin produced by Lactococcus lactis is Lactococcin B. This AMP is involved in changes of membrane potential.

The reported fungal AMP compounds are more than bacterial AMP and found to be a good source of antimicrobial compounds discovery against infections due to similarity in features and responses to infections.

The in silico cDNA scanning method is widely used for determining the sequencing of Defensin like peptides and more than 100 AMP’s are revealed with the help of genome screening approaches.

Fungal AMP’s Peptaibols isolated as secondary metabolites from possesses anti-microbial and anti-fungal activities. They have short amino acid chains.

The article is Open Access till 31st December, 2018. To obtain the article, please visit: http://www.eurekaselect.com/167269/article

###

Media Contact
Faizan ul Haq
[email protected]
http://dx.doi.org/10.2174/1568026618666181112143351

Tags: BacteriologyBiochemistryBiodiversityImmunology/Allergies/AsthmaMedicine/HealthMicrobiologyMolecular BiologyPharmaceutical SciencesPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mpox Virus Impact in SIVmac239-Infected Macaques

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

Seismic Analysis of Masonry Facades via Imaging

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.