• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, February 26, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Mysterious organic scum boosts chemical reaction efficiency, may reduce chemical waste

Bioengineer by Bioengineer
February 4, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Graphic courtesy Alex Jerez, Imaging Technology Group – Beckman Institute.

CHAMPAIGN, Ill. — Chemical manufacturers frequently use toxic solvents such as alcohols and benzene to make products like pharmaceuticals and plastics. Researchers are examining a previously overlooked and misunderstood phenomenon in the chemical reactions used to make these products. This discovery brings a new fundamental understanding of catalytic chemistry and a steppingstone to practical applications that could someday make chemical manufacturing less wasteful and more environmentally sound.

The study led by University of Illinois Urbana-Champaign researcher David Flaherty, University of Minnesota, Twin Cities researcher Matthew Neurock and Virginia Tech researcher Ayman Karim is published in the journal Science.

Combining solvents and metal nanoparticles accelerates many chemical reactions and helps maximize yield and profit margins for the chemical industry. However, many solvents are toxic and difficult to safely dispose, the researchers said. Water works, too, but it is not nearly as efficient or reliable as organic solvents. The reason for the difference was thought to be the limited solubility of some reactants in water. However, multiple irregularities in experimental data have led the team to realize the reasons for these differences were not fully understood.

To better understand the process, the team ran experiments to analyze the reduction of oxygen to hydrogen peroxide – one set using water, another with methanol, and others with water and methanol mixtures. All experiments used palladium nanoparticles.

“In experiments with methanol, we observed spontaneous decomposition of the solvent that leaves an organic residue, or scum, on the surface of the nanoparticles,” said Flaherty, a professor of chemical and biomolecular engineering at Illinois. “In some cases, the scumlike residue clings to the nanoparticles and increases reaction rates and the amount of hydrogen peroxide formed instead of hampering the reaction. This observation made us wonder how it could be helping.”

The team found that the residue, or surface redox mediator, holds oxygen-containing species, including a key component hydroxymethyl. It accumulates on the palladium nanoparticles’ surface and opens new chemical reaction pathways, the study reports.

“Once formed, the residue becomes part of the catalytic cycle and is likely responsible for some of the different efficiencies among solvents reported over the past 40 years of work on this reaction,” Flaherty said. “Our work provides strong evidence that these surface redox mediators form in alcohol solvents and that they may explain many past mysteries for this chemistry.”

By working with multiple types of experiments and computational simulations, the team learned that these redox mediators effectively transfer both protons and electrons to reactants, whereas reactions in pure water transfer protons easily, but not electrons. These mediators also alter the nanoparticles’ surface in a way that lowers the energy barrier to be overcome for proton and electron transfer, the study reports.

“We show that the alcohol solvents as well as organic additives can react to form metal-bound surface mediators that act much in the same way that the enzymatic cofactors in our bodies do in catalyzing oxidation and reduction reactions,” Neurock said.

Additionally, this work may have implications for reducing the amounts of solvent used and waste generated in the chemical industry.

“Our research suggests that for some situations, chemical producers could form the surface redox mediators by adding small amounts of an additive to pure water instead of pumping thousands of gallons of organic solvents through these reactors,” Flaherty said.

###

The Energy and Biosciences Institute through the EBI-Shell program and the National Science Foundation supported this research.

Editor’s notes:

To reach David Flaherty, call 217-244-2816; email [email protected]

The paper “Solvent molecules form surface redox mediators in situ and cocatalyze oxygen reduction on Pd” is available from the U. of I. News Bureau

Media Contact
Lois Yoksoulian
[email protected]

Original Source

https://news.illinois.edu/view/6367/1072514425

Tags: Biomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsPharmaceutical/Combinatorial Chemistry
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Samara Polytech scientists have patented the TopCryst.Find_Topology service

February 26, 2021
IMAGE

Novel catalysts improve efficiency of urea synthesis at ambient conditions

February 26, 2021

URI researchers: Microbes deep beneath seafloor survive on byproducts of radioactive process

February 26, 2021

Scientists use Doppler to peer inside cells

February 25, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    638 shares
    Share 255 Tweet 160
  • People living with HIV face premature heart disease and barriers to care

    81 shares
    Share 32 Tweet 20
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Cell BiologycancerTechnology/Engineering/Computer SciencePublic HealthMedicine/HealthInfectious/Emerging DiseasesEcology/EnvironmentMaterialsBiologyGeneticsChemistry/Physics/Materials SciencesClimate Change

Recent Posts

  • Samara Polytech scientists have patented the TopCryst.Find_Topology service
  • Explainable AI: A must for nuclear nonproliferation, national security
  • Novel catalysts improve efficiency of urea synthesis at ambient conditions
  • SARS-CoV-2 mutations in competition
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In