• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Mutations prevent programmed cell death

Bioengineer by Bioengineer
December 18, 2014
in Bioengineering, Cancer
Reading Time: 2 mins read
2
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Programmed cell death is a mechanism that causes defective and potentially harmful cells to destroy themselves. It serves a number of purposes in the body, including the prevention of malignant tumor growth. Now, researchers at Technische Universität München (TUM) have discovered a previously unknown mechanism for regulating programmed cell death. They have also shown that patients with lymphoma often carry mutations in this signal pathway.

Mutations prevent programmed cell death

Fluorescence microscopy image showing the ubiquitin ligase FBXO25 (green) and the “life-preserving” protein (red) in a cancer cell that is currently undergoing programmed cell death. The yellow signal indicates instances where both proteins are at the same location. (Picture: F. Bassermann / TUM)

A team of scientists headed by Dr. Florian Bassermann at the III. Medizinische Klinik, TUM Klinikum rechts der Isar, has been investigating mantle cell lymphoma, a subgroup of non-Hodgkin’s lymphoma, which, despite new therapies, has poor patient survival rates. “Programmed cell death no longer functions in many lymphoma cells. This causes them to multiply uncontrollably. We urgently need to find out what’s going wrong in these cells in order to find new treatment therapies,” explains Bassermann.

The scientists started analyzing samples of human mantle cell lymphoma in a bid to find errors in the DNA. They discovered a region that is mutated in almost 30 percent of patients. The scientists found that this region plays a key role in producing one particular enzyme, the ubiquitin ligase FBXO25. “We already knew that ubiquitin ligases are involved in breaking down proteins in cells. Now, however, we can show just how it contributes to the development of lymphoma,” explains Bassermann.

Survival strategy of cancer cells

During the course of numerous experiments, the scientists were able to decode a new signal path that triggers programmed cell death. Before a cell can start destroying itself, one particular protein that keeps healthy cells alive has to be removed. The researchers discovered that the ubiquitin ligase FBXO25 marks this protein with a signal molecule which triggers the disposal process.

“If there is a defect in the ubiquitin ligase, this mechanism no longer functions. The tumor cells in question do not destroy themselves and start growing unchecked,” continues Bassermann. The scientists also showed that cells with mutated FBXO25 displayed a much poorer response to chemotherapies, leaving the tumors in a much more stable condition. In a further finding, the researchers discovered other mutations in the cancer cells under investigation. In some cases, the very protein that keeps the cell alive was defective, carrying a mutation that made it resistant to destruction.

New therapies targeting ubiquitin ligase

Once this new signal path had been discovered, the scientists started working on a new therapy approach. They treated the cancer cells in such a way that they were able – once again – to create a functioning variant of the ubiquitin ligase. Instead of multiplying uncontrollably, the cells began destroying themselves again.

“We need to zero in on the exact defect in a tumor cell in order to adapt therapies more closely to individual types of tumors – this is particularly relevant to the field of personalized medicine. Our findings show that this signal path for mantle cell lymphoma could offer a promising approach for new therapies,” concludes Bassermann.

Story Source:

The above story is based on materials provided by Technischen Universität München.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

NRG Oncology Announces New Leadership for NCORP and Veterans Affairs Research Programs

August 13, 2025
Combining Dual Immune Checkpoint Inhibition with Radiotherapy Fails to Enhance Progression-Free Survival in Newly Diagnosed MGMT-Unmethylated Glioblastoma Patients

Combining Dual Immune Checkpoint Inhibition with Radiotherapy Fails to Enhance Progression-Free Survival in Newly Diagnosed MGMT-Unmethylated Glioblastoma Patients

August 13, 2025

Promising Neoadjuvant Immunochemoradiotherapy for MSS/pMMR Rectal Cancer

August 13, 2025

Targeted Growth of TCF7-Positive Tumor-Reactive T Cells Offers New Hope for Ovarian Cancer

August 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Genomic Origins of Chaetognath’s Unique Body Plan

WashU Secures Up to $5.2 Million in Federal Funding to Enhance Biomanufacturing Capabilities

NRG Oncology Announces New Leadership for NCORP and Veterans Affairs Research Programs

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.