• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, August 16, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Multi-hop communication: Frog choruses inspire wireless sensor networks

Bioengineer by Bioengineer
January 22, 2019
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research collaboration including investigators from Osaka University devise a mathematical model based on the natural coordination of frog choruses, then apply it toward design of efficient networks

IMAGE

Credit: Osaka University


Osaka, Japan – If you’ve ever camped by a pond, you know frogs make a racket at night; but what you might not know is how functional and regulated their choruses really are. Frogs communicate with sound, and amid their ruckus is an internally orchestrated system that lets information get through more clearly while also permitting collective choruses and time to rest. Researchers from Osaka University and University of Tsukuba sought to leverage this amphibious acumen for mathematical and technological aims.

The team looked at the calling patterns of male Japanese tree frogs over different time intervals. To do so, they placed three frogs in individual inside cages and recorded their vocal interplay. They found the frogs both avoided overlapping croaks and collectively switched between calling and silence. The researchers then created a mathematical model to adapt the frogs’ acoustic teachings for technological benefit, as such patterns are similar to those valued in networks. The findings are reported in the journal Royal Society Open Science.

“We found neighboring frogs avoided temporal overlap, which allows a clear path for individual voices to be heard,” study co-author Daichi Kominami explains. “In this same way, neighboring nodes in a sensor network need to alternate the timings of data transmission so the data packets don’t collide.”

In the observed frog trios, there were also times of alternating between collective silences and choruses. The overlap avoidance was consistent (deterministic), while the latter collective calls were more varied (stochastic). A further utility in the pattern was how it smartly allows the frogs rest breaks from their calling, which demands a great deal of energy.

The researchers then developed a mathematical model incorporating the frogs’ main interaction patterns and adapting them to a phase-based format usable for technological means.

“We modeled the calling and silent states in a deterministic way,” according to lead author Ikkyu Aihara, “while modeled the transitions to and from them in a stochastic way. Those models qualitatively reproduced the calling pattern of actual frogs and were then helpful in designing autonomous distributed communication systems.”

Such systems must cleverly regulate give and take, activity and rest. Therefore, as the third part of the study, the researchers leveraged the model for data traffic management in a wireless sensor network. These networks are a key component in the Internet of things, as their dispersed sensor nodes measure and communicate different environmental characteristics. Then, through complex coordination, collected data are fed to a central system.

They found the short-time-scale alternation was especially effective at averting data packet collisions. Meanwhile, the cyclic and collective transitions in the long time scale offered promise for regulating energy consumption.

“There is a dual benefit to this study,” co-author Masayuki Murata says. “It will lead both to greater biological knowledge in understanding frog choruses, and to greater technological efficiency in wireless sensor networks.”

###

The article, “Mathematical modelling and application of frog choruses as an autonomous distributed communication system,” was published in Royal Society Open Science at DOI: https://doi.org/10.1098/rsos.181117.

[About Osaka University]

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan’s leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan’s most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university’s ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: https://resou.osaka-u.ac.jp/en/top

Media Contact
Saori Obayashi
[email protected]
81-661-055-886

Original Source

https://resou.osaka-u.ac.jp/en/research/2019/20190109_1

Related Journal Article

http://dx.doi.org/10.1098/rsos.181117

Tags: AcousticsAlgorithms/ModelsBiologyComputer ScienceMultimedia/Networking/Interface DesignSystems/Chaos/Pattern Formation/ComplexityTheory/DesignZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Immune cells have a sweet tooth

Immune cells in the intestine have a sweet tooth

August 15, 2022
How Posture Affects Taking Pills

The best way to take pills according to science

August 15, 2022

Weird and wonderful world of fungi shaped by evolutionary bursts, study finds

August 15, 2022

Gifted dogs are more playful

August 15, 2022
Please login to join discussion

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VirologyUniversity of WashingtonVehiclesVaccinesVaccineUrbanizationWeaponryVirusUrogenital SystemWeather/StormsZoology/Veterinary ScienceViolence/Criminals

Recent Posts

  • Today’s heat waves feel a lot hotter than heat index implies
  • Aging | New research: Volume 14, Issue 15
  • New chip could make treating metastatic cancer easier and faster
  • MU math specialists boost knowledge, confidence among elementary school students, teachers
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In