• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, June 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Most rivers run dry — now and then

Bioengineer by Bioengineer
June 16, 2021
in Science News
Reading Time: 5 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Over half of the world’s rivers cease to flow for at least one day a year on average

IMAGE

Credit: McGill University

A new study led by researchers from McGill University and INRAE found that between 51-60% of the 64 million kilometres of rivers and streams on Earth that they investigated stop flowing periodically, or run dry for part of the year. It is the first-ever empirically grounded effort to quantify the global distribution of non-perennial rivers and streams. The research, which was published today in Nature, calls for a paradigm shift in river science and management by revising foundational concepts which traditionally assumed year-round water flow in rivers and streams. The map of non-perennial rivers resulting from this study, the first of its kind, also provides crucial baseline information for the assessment of future changes in river flow intermittence and for determining and monitoring the role of these rivers and streams in global water and biochemical cycles, as well as in supporting biological diversity.

“Non-perennial rivers and streams are very valuable ecosystems as they are home to many distinct species that are adapted to cycles of water presence and absence,” says Mathis Messager, first author of the study and PhD student both in Geography at McGill and at the French National Research Institute for Agriculture, Food, and Environment (INRAE). “These rivers can provide critical water and food sources for people and they play an important role in controlling water quality. But more often than not they are mismanaged or altogether excluded from management actions and conservation laws as they are simply overlooked.”

Non-perennial rivers and streams found on all continents

“Given continued global climate and land use change, an increasingly large proportion of the global river network is expected to cease to flow seasonally over the coming decades,”said Bernhard Lehner, an Associate Professor in McGill’s Department of Geography and one of the co-senior authors on the paper. “In fact, many formerly perennial rivers and streams, including sections of iconic rivers such as the Nile, the Indus and the Colorado River have become intermittent in the past 50 years due to climate change, land use transitions, or the temporary or permanent withdrawal of water for human use and agriculture.”

The researchers were able to identify the most important environmental characteristics in determining whether a river periodically ceases to flow by statistically associating long-term records of water flow in 5615 locations around the world with information on the hydrology, climate, geology, and surrounding land cover of the rivers and streams monitored at these locations. They found, as expected, that non-perennial rivers are most common in arid places (where there is much more evaporation than rainfall) and that smaller rivers and streams have generally more variable flow and are thus more likely to dry up. But they also occur in tropical climates and even in the Arctic where rivers freeze up for parts of the year.

Interestingly, the study also suggests, based on preliminary estimates, that more than half of the world’s population lives in locations where the closest river or stream around them is non-perennial. Indeed, in many languages, multiple words exist to designate these types of watercourses and their mark on the landscape, highlighting the long history of inter-dependence between humans and seasonal freshwater systems.

A long-standing neglect with significant consequences

Over the past decade, there have been several efforts to highlight the values and rapid ongoing degradation of non-perennial rivers and streams. Most freshwater science until now has focused on the functioning and conservation of perennial water bodies; and only recently have scientists started to realize the important consequences of flow cessation in rivers and streams. “Consequently, science-based methods for managing these unique ecosystems, such as tools and protocols to monitor the health of these rivers are still limited or absent,” adds Messager. “And this oversight leads to excessive water pumping, pollution, and overfishing of in many cases.”

“There have also been several recent attempts to remove non-perennial rivers from environmental legislation and national water governance systems, including in the U.S. and France,” adds Thibault Datry, a freshwater scientist at INRAE, and co-senior author on the paper. “By mapping non-perennial rivers and streams, our study pushes for a recognition of their prevalence and ecological significance by the scientific community. We hope that our study will trigger efforts to adequately manage these river ecosystems and halt attempts to exclude them from protective legislation.”

###

To read: “Global prevalence of non-perennial rivers and streams”, by Mathis Messager et al in Nature
DOI: 10.1038/s41586-021-03565-5

The research was funded by the Natural Sciences and Engineering Research Council of Canada, a McGill University Tomlinson Fellowship, a Doctoral Fellowship from H2O Lyon Doctoral School, and through the DRYvER project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 869226.

About McGill University

Founded in Montreal, Quebec, in 1821, McGill University is Canada’s top ranked medical doctoral university. McGill is consistently ranked as one of the top universities, both nationally and internationally. It is a world-renowned institution of higher learning with research activities spanning two campuses, 11 faculties, 13 professional schools, 300 programs of study and over 40,000 students, including more than 10,200 graduate students. McGill attracts students from over 150 countries around the world, its 12,800 international students making up 31% of the student body. Over half of McGill students claim a first language other than English, including approximately 19% of our students who say French is their mother tongue.

About INRAE

Created on January 1, 2020, the French National Research Institute for Agriculture, Food, and Environment (INRAE) is a major player in research and innovation. INRAE carries out targeted research and resulted from the merger of INRA and IRSTEA. It is a community of 12,000 people with 268 research, experimental research, and support units located in 18 regional centres throughout France. Internationally, INRAE is among the top research organisations in the agricultural and food sciences, plant and animal sciences, as well as in ecology and environmental science. It is the world’s leading research organisation specialising in agriculture, food and the environment. INRAE’s goal is to be a key player in the transitions necessary to address major global challenges. Faced with a growing world population, climate change, resource scarcity, and declining biodiversity, the institute is developing solutions that involve multiperformance agriculture, high-quality food, and the sustainable management of resources and ecosystems.

Contact:

Katherine Gombay

McGill University, Media Relations Office

+1(514) 717-2289

[email protected]

Subscribe to receive news about McGill’s experts and research.

Visit the McGill Newsroom for more information

Follow McGill on Twitter

Media Contact
Katherine Gombay
[email protected]

Original Source

https://www.mcgill.ca/newsroom/channels/news/most-rivers-run-dry-now-and-then-331517

Related Journal Article

http://dx.doi.org/10.1038/s41586-021-03565-5

Tags: Climate ChangeClimate ScienceEarth ScienceEcology/EnvironmentGeographyHydrology/Water ResourcesPlant SciencesTemperature-Dependent Phenomena
Share13Tweet8Share2ShareShareShare2

Related Posts

Figure1

Seamlessly Connect Nanoparticles Like Building Blocks for Industrial Applications!

June 17, 2025
Diana Bernin_ ChalmersUniversityofTechnology

From Farm to Fashion: How Agricultural Waste is Transforming into Tomorrow’s Textiles

June 17, 2025

Boosting D-Lactic Acid Production Through UV Irradiation Advances

June 17, 2025

Blueprint Reveals Pathway for Expanding Australia’s Bioeconomy

June 17, 2025
Please login to join discussion

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    159 shares
    Share 64 Tweet 40
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    76 shares
    Share 30 Tweet 19
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    70 shares
    Share 28 Tweet 18
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Seamlessly Connect Nanoparticles Like Building Blocks for Industrial Applications!

From Farm to Fashion: How Agricultural Waste is Transforming into Tomorrow’s Textiles

Boosting D-Lactic Acid Production Through UV Irradiation Advances

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.