• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, March 6, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Most people are naturally armed against SARS-CoV-2

Bioengineer by Bioengineer
February 11, 2021
in Immunology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Mor M, et al., 2021, PLOS Pathogens, CCBY 4.0 (https://creativecommons.org/licenses/by/4.0/)

The majority of the population can produce neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in severe cases of coronavirus disease 2019 (COVID-19), according to a study published February 11 in the open-access journal PLOS Pathogens by Michael Mor of Tel Aviv University, and colleagues. Moreover, the results support the use of combination antibody therapy to prevent and treat COVID-19.

The COVID-19 pandemic, caused by SARS-CoV-2, has had a profound impact on global public health. Neutralizing antibodies that specifically target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein are thought to be essential for controlling the virus. RBD-specific neutralizing antibodies have been detected in convalescent patients – those who have recovered from COVID-19. Some of the recoverees tend to have robust and long-lasting immunity, while others display a waning of their neutralizing antibodies. The factors associated with an effective, durable antibody response are still unclear.

To address this gap in knowledge, Mor and colleagues used molecular and bioinformatics techniques to compare B-cell responses in eight patients with severe COVID-19 and 10 individuals with mild symptoms, 1.5 months after infection. Very ill patients showed higher concentrations of RBD-specific antibodies and increased B-cell expansion. Among 22 antibodies cloned from two of these patients, six exhibited potent neutralization against SARS-CoV-2. Bioinformatics analysis suggests that most people would be capable of readily producing neutralizing antibodies against SARS-CoV-2 in severe cases of COVID-19. Moreover, combinations of different types of neutralizing antibodies completely blocked the live virus from spreading. According to the authors, these antibody cocktails can be further tested in clinical settings as a useful means to prevent and treat COVID-19.

“Even with a vaccine at our doorstep, arming clinicians with specific anti-SARS-CoV-2 therapeutics is extremely important,” the authors add. “Combinations of neutralizing antibodies represent a promising approach towards effective and safe treatment of severe COVID-19 cases, especially in the elderly population or chronically ill people, who will not be able to so easily produce these antibodies upon infection or vaccination.”

###

Peer-reviewed / Experimental study / People; Cells

In your coverage please use this URL to provide access to the freely available article in PLOS Pathogens:
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1009165

Citation: Mor M, Werbner M, Alter J, Safra M, Chomsky E, Lee JC, et al. (2021) Multi-clonal SARS-CoV-2 neutralization by antibodies isolated from severe COVID-19 convalescent donors. PLoS Pathog 17(2): e1009165. https://doi.org/10.1371/journal.ppat.1009165

Funding: This research was funded by the Israeli Science Foundation grant 3711/20 (N. T. F.) and by the Tel Aviv University Vice President of Research and Development. N.T.F is also funded by the ISF grant number 41222/18, and Israeli Innovation Authority grant number 68972. This work was also supported by NIH Grant RO1 HL124209 (B.C.), the American Asthma Foundation (B.C.), and the BSF 2017176 (B.C.), and a Career Award for Medical Scientists from the Burroughs Welcome Fund (A.F.C.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist The antibodies described in this manuscript are protected by patent and NT Freund and M Mor and D Hagin are the inventors.

Media Contact
PLOS Pathogens
[email protected]

Related Journal Article

http://dx.doi.org/10.1371/journal.ppat.1009165

Tags: Immunology/Allergies/AsthmaInfectious/Emerging DiseasesMedicine/HealthPublic Health
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Monoclonal antibody “cocktail” blocks COVID-19 variants: Study

March 5, 2021
IMAGE

Int’l Women’s Day: Fathima Wakeel to present at Women in Data Science Conference

March 4, 2021

A new strategy for pooling COVID-19 tests to detect outbreaks early

March 4, 2021

Easy-to-deliver mRNA treatment shows promise for stopping flu and Covid-19 viruses

March 4, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    668 shares
    Share 267 Tweet 167
  • People living with HIV face premature heart disease and barriers to care

    84 shares
    Share 34 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    39 shares
    Share 16 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Climate ChangecancerMaterialsCell BiologyChemistry/Physics/Materials SciencesBiologyTechnology/Engineering/Computer ScienceInfectious/Emerging DiseasesPublic HealthEcology/EnvironmentMedicine/HealthGenetics

Recent Posts

  • “Magic sand” might help us understand the physics of granular matter
  • Study reveals how egg cells get so big
  • Survey identifies factors in reducing clinical research coordinator turnover
  • New ‘split-drive’ system puts scientists in the (gene) driver seat
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In