• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, August 17, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Neuroscience

Modeling How Neurons Work May Inform Robotics

Bioengineer by Bioengineer
August 30, 2014
in Neuroscience
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A highly accurate model of how neurons behave when performing complex movements could aid in the design of robotic limbs which behave more realistically.

Modeling How Neurons Work May Inform Robotics

Multiphoton microscopy of mouse motor neurons – Photo Credit: Zeiss Microscopy via flickr

A newly-developed, highly accurate representation of the way in which neurons behave when performing movements such as reaching could not only enhance understanding of the complex dynamics at work in the brain, but aid in the development of robotic limbs which are capable of more complex and natural movements.

Researchers from the University of Cambridge, working in collaboration with the University of Oxford and the Ecole Polytechnique Fédérale de Lausanne (EPFL), have developed a new model of a neural network, offering a novel theory of how neurons work together when performing complex movements. The results are published in the 18 June edition of the journal Neuron.

While an action such as reaching for a cup of coffee may seem straightforward, the millions of neurons in the brain’s motor cortex must work together to prepare and execute the movement before the coffee ever reaches our lips. When we reach for the much-needed cup of coffee, the neurons spring into action, sending a series of signals from the brain to the hand. These signals are transmitted across synapses – the junctions between neurons.

Determining exactly how the neurons work together to execute these movements is difficult, however. The new theory was inspired by recent experiments carried out at Stanford University, which had uncovered some key aspects of the signals that neurons emit before, during and after the movement. “There is a remarkable synergy in the activity recorded simultaneously in hundreds of neurons,” said Dr Guillaume Hennequin of the University’s Department of Engineering, who led the research. “In contrast, previous models of cortical circuit dynamics predict a lot of redundancy, and therefore poorly explain what happens in the motor cortex during movements.”

Better models of how neurons behave will not only aid in our understanding of the brain, but could also be used to design prosthetic limbs controlled via electrodes implanted in the brain. “Our theory could provide a more accurate guess of how neurons would want to signal both movement intention and execution to the robotic limb,” said Dr Hennequin.

The behaviour of neurons in the motor cortex can be likened to a mousetrap or a spring-loaded box, in which the springs are waiting to be released and are let go once the lid is opened or the mouse takes the bait. As we plan a movement, the ‘neural springs’ are progressively flexed and compressed. When released, they orchestrate a series of neural activity bursts, all of which takes place in the blink of an eye.

The signals transmitted by the synapses in the motor cortex during complex movements can be either excitatory or inhibitory, which are in essence mirror reflections of each other. The signals cancel each other out for the most part, leaving occasional bursts of activity.

Using control theory, a branch of mathematics well-suited to the study of complex interacting systems such as the brain, the researchers devised a model of neural behaviour which achieves a balance between the excitatory and inhibitory synaptic signals. The model can accurately reproduce a range of multidimensional movement patterns.

The researchers found that neurons in the motor cortex might not be wired together with nearly as much randomness as had been previously thought. “Our model shows that the inhibitory synapses might be tuned to stabilise the dynamics of these brain networks,” said Dr Hennequin. “We think that accurate models like these can really aid in the understanding of the incredibly complex dynamics at work in the human brain.”

Future directions for the research include building a more realistic, ‘closed-loop’ model of movement generation in which feedback from the limbs is actively used by the brain to correct for small errors in movement execution. This will expose the new theory to the more thorough scrutiny of physiological and behavioural validation, potentially leading to a more complete mechanistic understanding of complex movements.

Story Source:

The above story is based on materials provided by University of Cambridge

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Redox biomarker could predict progression of epilepsy

October 5, 2016
blank

Neural membrane’s structural instability may trigger multiple sclerosis

October 5, 2016

Scientists find new path in brain to ease depression

October 5, 2016

Key players responsible for learning and memory formation uncovered

October 3, 2016
Please login to join discussion

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Urogenital SystemZoology/Veterinary ScienceVaccinesUrbanizationVaccineWeather/StormsVehiclesUniversity of WashingtonViolence/CriminalsVirologyWeaponryVirus

Recent Posts

  • New model describes puffs, slugs, and the role of randomness in transitional turbulence
  • This mouse can’t keep a secret about the “secretome”
  • New prenatal test can reduce time, cost of detecting chromosomal abnormalities
  • Dogs lying in the middle of the road after sunrise at Kewa Pueblo, in no hurry to start the day
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In