• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Magnetic teeth hold promise for materials and energy

Bioengineer by Bioengineer
February 1, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A mollusk with teeth that can grind down rock may hold the key to making next generation abrasion-resistant materials and nanoscale materials for energy

IMAGE

Credit: Kisailus Biomimetics & Nanostructured Materials Lab


A mollusk with teeth that can grind down rock may hold the key to making next generation abrasion-resistant materials and nanoscale materials for energy.

The mollusk, called a gumboot chiton, scrapes algae off ocean rocks using a specialized set of teeth made from the magnetic mineral magnetite. The teeth have the maximum hardness and stiffness of any known biomineral. Although magnetite is a geologic mineral commonly found in the earth’s crust, only a few animals are known to produce it, and little is known about how they make it.

A better understanding of the biomineralization process, combined with a thorough understanding of chiton tooth architecture and mechanics, could help scientists not only improve wear-resistant coatings and tooling, but also help grow nanoscale materials for energy and water-based applications.

Now, for the first time, a team led by Michiko Nemoto, an assistant professor of agriculture at Okayama University and David Kisailus, a professor of materials science and chemical engineering in UC Riverside’s Bourns College of Engineering, has discovered a piece of the genetic puzzle that allows the chiton to produce magnetite nanomaterials.

Chitons have several dozen rows of teeth attached to a ribbon-like structure. Each tooth is composed of a mineralized cusp, or pointed area, and base supporting the mineralized cusp. Magnetite is deposited only in the cusp region. As teeth wear down they are replaced by new teeth, so teeth in varying stages of formation are always present.

Rather than looking for specific genes, the researchers examined the transcriptome, the set of all RNA molecules in the teeth, to see what substances the genes were actually expressing. DNA contains the blueprints, but RNA is what “transcribes” the blueprints and helps carry them out.

They found that the 20 most abundant RNA transcripts in the developing teeth region contain ferritin, a protein that stores iron and releases it in a controlled fashion, while those in the mineralized teeth region include proteins of mitochondria that may provide the energy required to transform the raw materials into magnetite. On the fully mineralized cusp the researchers also identified 22 proteins that included a new protein they called “radular teeth matrix protein1.” The new protein might interact with other substances present on the teeth to produce iron oxide.

The findings could help scientists solve an urgent problem for next generation electronics– nanoscale energy sources to power them. Knowing how to control the growth of biological magnetite, whose magnetic fields have electrical applications, could help scientists create nanoscale energy materials.

The open access paper, “Integrated transcriptomic and proteomic analyses of a molecular mechanism of radular teeth biomineralization in Cryptochiton stelleri,” was published January 29 in Scientific Reports. In addition to Nemoto and Kisailus, authors include Dongni Ren, Steven Herrera, Songqin Pan, Takashi Tamura, Kenji Inagaki.

###

Media Contact
Holly Ober
[email protected]
951-827-5893

Original Source

https://news.ucr.edu/articles/2019/01/31/magnetic-teeth-hold-promise-materials-and-energy

Related Journal Article

http://dx.doi.org/10.1038/s41598-018-37839-2

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyChemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)GeneticsMarine/Freshwater BiologyMaterialsMolecular BiologyNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Beneficial Gut Bacteria Enhances Placental Health for Improved Pregnancy Outcomes

October 7, 2025
Yeast Proteins Unlock the Mysteries of Drought Resistance

Yeast Proteins Unlock the Mysteries of Drought Resistance

October 6, 2025

Hub1 Overexpression: Revolutionizing Transcription and Splicing in Yeast

October 6, 2025

Scientists Secure $3.7 Million Grant to Explore the Link Between Perimenopause and Psychosis

October 6, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    74 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Beneficial Gut Bacteria Enhances Placental Health for Improved Pregnancy Outcomes

New Insights into Endothelial Cell Death in Sepsis

LVSG Effects on LES and GERD: Meta-Analysis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.