• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Machine learning accelerates discovery of materials for use in industrial processes

Bioengineer by Bioengineer
January 11, 2021
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Platform aims to minimize resources required in the development of new materials for use in targeted applications

IMAGE

Credit: Courtesy of University of Toronto

TORONTO, ON – New research led by researchers at the University of Toronto (U of T) and Northwestern University employs machine learning to craft the best building blocks in the assembly of framework materials for use in a targeted application.

The findings, published today in Nature Machine Intelligence, demonstrated that the use of artificial intelligence (AI) approaches can help in proposing novel materials for diverse applications. One example is the separation of carbon dioxide from industrial combustion processes. AI approaches promise the acceleration of the design cycle for materials.

With the objective of improving the separation of chemicals in industrial processes, the team of researchers – including collaborators from Harvard University and the University of Ottawa – set out to identify the best reticular frameworks (e.g., metal organic frameworks, covalent organic frameworks) for use in the process. Such frameworks, which can be thought of as tailored molecular “sponges”, form via the self-assembly of molecular building blocks into different arrangements and represent a new family of crystalline porous materials that have been proven to be promising in addressing many technology challenges (e.g., clean energy, sensoring, biomedicine, etc.)

“We built an automated materials discovery platform that generates the design of various molecular frameworks, significantly reducing the time required to identify the optimal materials for use in this particular process,” says Zhenpeng Yao, a postdoctoral fellow in the Departments of Chemistry and Computer Science in the Faculty of Arts & Science at U of T, and lead author of the study. “In this demonstrated employment of the platform, we discovered frameworks that are strongly competitive against some of the best-performing materials used for CO2 separation known to date.”

The perennial challenges in addressing CO2 separation and other problems like greenhouse gas reduction and vaccine development, however, are the unpredictable amount of time and extensive trial-and-error efforts required in the pursuit of such new materials. The occasionally infinite combinations of molecular building blocks available in the construction of chemical compounds can mean the exhaustion of significant amounts of time and resources before a breakthrough is made.

“Designing reticular materials is particularly challenging, as they bring the hard aspects of modeling crystals together with those of modeling molecules in a single problem,” says senior coauthor Alán Aspuru-Guzik, Canada 150 Research Chair in Theoretical Chemistry in the Departments of Chemistry and Computer Science at U of T and Canada CIFAR AI Chair at the Vector Institute. “This approach to reticular chemistry exemplifies our emerging focus at U of T of accelerating materials development by means of artificial intelligence. By using an AI model that can ‘dream’ or suggest novel materials, we can go beyond the traditional library-based screening approach.”

The researchers focused on the development of metal-organic frameworks (MOFs) that are now considered the ideal absorbing material for the removal of CO2 from flue gas and other combustion processes.

“We began with the construction of a large number of MOF structures on the computer, simulated their performance using molecular-level modeling, and built a training pool applicable to the chosen application of CO2 separation,” said study co-author Randall Snurr, the John G. Searle Professor and chair of the Department of Chemical & Biological Engineering in the McCormick School of Engineering at Northwestern University. “In the past, we would have screened through the pool of candidates computationally and reported the top candidates. What’s new here is that the automated materials discovery platform developed in this collaborative effort is more efficient than such a “brute force” screening of every material in a database. Perhaps more importantly, the approach uses machine learning algorithms to learn from the data as it explores the space of materials and actually suggests new materials that were not originally imagined.”

The researchers say the model shows great prediction and optimization capability in the design of novel reticular frameworks, particularly in combination with already known candidates in specific functions, and that the platform is fully customizable in its application to address many contemporary technology challenges.

###

The research was supported by the Office of Science at the United States Department of Energy, the Canadian Network for Research and Innovation in Machining Technology, and the Natural Sciences and Engineering Research Council of Canada.

MEDIA CONTACTS:

Zhenpeng Yao

Departments of Chemistry & Computer Science

Faculty of Arts & Science

University of Toronto

[email protected]

Alán Aspuru-Guzik

Departments of Chemistry & Computer Science

Faculty of Arts & Science

University of Toronto

[email protected]

Randall Snurr

Department of Chemical & Biological Engineering

McCormick School of Engineering

Northwestern University

[email protected]

Sean Bettam

Communications and Media Relations Specialist

Faculty of Arts & Science

University of Toronto

[email protected]

Julianne Hill

Director of Communications

McCormick School of Engineering

Northwestern University

[email protected]

Media Contact
Sean Bettam
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s42256-020-00271-1

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyChemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsTechnology/Engineering/Computer ScienceTheory/Design
Share13Tweet8Share2ShareShareShare2

Related Posts

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

August 1, 2025
Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

August 1, 2025

5 Innovations Securing Water Sources and Ensuring Availability

August 1, 2025

Innovative Imaging Technique Reveals Elemental Distributions in Frozen Solvents within Nanomaterials

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    40 shares
    Share 16 Tweet 10
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Predicting Lung Infections After Brain Hemorrhage

Impact of Morphology and Location on Aneurysms

Unraveling EMT’s Role in Colorectal Cancer Spread

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.