• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 18, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Living a stronger and longer life: What U-M scientists are learning from worms

Bioengineer by Bioengineer
January 2, 2019
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ANN ARBOR–Research from the University of Michigan Life Sciences Institute has uncovered a cause of declining motor function and increased frailty in tiny aging worms–and a way to slow it down.

The findings, scheduled to publish Jan. 2 in Science Advances, identify a molecule that can be targeted to improve motor function and indicate that similar pathways may be at play in aging mammals as well.

As humans and animals age, our motor functions progressively deteriorate. Millimeter-long roundworms called nematodes exhibit aging patterns remarkably similar to those of other animals, and they only live about three weeks, making them an ideal model system for studying aging.

“We previously observed that as worms age, they gradually lose physiological functions,” said Shawn Xu, professor at the LSI and senior study author. “Sometime around the middle of their adulthood, their motor function begins to decline. But what causes that decline?”

To better understand how the interactions between cells changed as worms aged, Xu and his colleagues investigated the junctions where motor neurons communicate with muscle tissue.

They identified a molecule called SLO-1 (for “slowpoke potassium channel family member 1”) that acts as a regulator for these communications. The molecule dampens neurons’ activity, slowing down the signals from neurons to muscle tissue and reducing motor function.

The researchers manipulated SLO-1, first using genetic tools and then using a drug called paxilline. In both cases, they observed two major effects in the roundworms. Not only did they maintain better motor function later in life, they also lived longer than normal roundworms.

“It’s not necessarily ideal to have a longer lifespan without improvements in health or strength,” said Xu, who is also a professor of molecular and integrative physiology at the U-M Medical School. “But we found that the interventions improved both parameters–these worms are healthier and they live longer.”

Perhaps more surprisingly, the timing of the interventions drastically changed the effects on both motor function and lifespan. When SLO-1 was manipulated early in the worms’ life, it had no effect on lifespan and in fact had a detrimental effect on motor function in young worms. But when the activity of SLO-1 was blocked in mid-adulthood, both motor function and lifespan improved.

Because the SLO-1 channel is preserved across many species, Xu hopes these findings will encourage others to examine its role in aging in other model organisms.

“Studying aging in organisms with longer lifespans is a major investment,” he said. “But now we have identified a molecular target, a potential site and specific timing, which should facilitate further investigation.”

The researchers next hope to determine the importance of the SLO-1 channel in early development in the worms and also to better understand the mechanisms
through which it affects lifespan.

###

The research was primarily supported by the National Institutes of Health. In addition to Xu, the study authors are: Guang Li, Jianke Gong, Jie Liu, Jinzhi Liu, Huahua Li and Ao-Lin Hsu, all of U-M; and Jianfeng Liu of the College of Life Science and Technology and Huazhong University of Science and Technology, China.

The Science Advances report is titled “Genetic and pharmacological interventions in the aging motor nervous system slow motor aging and extend life span in C. elegans,” DOI: 10.1126/sciadv.aau5041.

Media Contact
Emily Kagey
[email protected]
http://dx.doi.org/10.1126/sciadv.aau5041

Tags: AgingBiologyGerontologyMedicine/HealthMolecular BiologyPhysiology
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

New management approach can help avoid species vulnerability or extinction

January 18, 2021
IMAGE

Eliminating microplastics in wastewater directly at the source

January 18, 2021

Biodistribution of AAV gene transfer vectors in nonhuman primate

January 15, 2021

Basis for the essential cellular powerhouses

January 15, 2021
Next Post

Sex differences identified in deadly brain tumors

Meta-analysis highlights important challenges in cognitive processing for adults with ASD

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    39 shares
    Share 16 Tweet 10
  • People living with HIV face premature heart disease and barriers to care

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

BiologyTechnology/Engineering/Computer SciencecancerChemistry/Physics/Materials SciencesEcology/EnvironmentGeneticsMedicine/HealthMaterialsClimate ChangeInfectious/Emerging DiseasesPublic HealthCell Biology

Recent Posts

  • New management approach can help avoid species vulnerability or extinction
  • New computational tool reliably differentiates between cancer and normal cells from single-cell RNA-sequencing data
  • Inexpensive battery charges rapidly for electric vehicles, reduces range anxiety
  • Timing is of the essence when treating brain swelling in mice
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In