• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Liquid metals break down organic fuels into ultra-thin graphitic sheets

Bioengineer by Bioengineer
June 10, 2020
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

First synthesis of ultra-thin graphitic materials at room temperature using organic fuels

IMAGE

Credit: UNSW, Sydney

For the first time, FLEET researchers at UNSW, Sydney show the synthesis of ultra-thin graphitic materials at room temperature using organic fuels (which can be as simple as basic alcohols such as ethanol).

Graphitic materials, such as graphene, are ultra-thin sheets of carbon compounds that are sought after materials with great promises for battery storage, solar cells, touch panels and even more recently fillers for polymers.

These researchers were able to synthesize ultra-thin carbon-based materials on the surface of liquid metals at room temperature electrochemically. Before this report, others had shown electro-formation of such carbon-based materials only by transferring sheets onto the electrodes or electrode exfoliation of naturally-occurring carbon crystals from mines.

“Using gallium liquid metal, we could catalytically break down the fuels and form carbon-carbon bonds (the base of graphitic sheets) from organic fuels at room temperature. The ultra-smooth surface of liquid metals could then template atomically-thin carbon based sheets. Removal of these sheets was easy as they do not stick to the liquid metal surface,” suggested Prof Kalantar-Zadeh, the lead of this project and the Director of the Centre for Advanced Solid and Liquid based Electronics and Optics (CASLEO) at UNSW.

“It is simple. Why has room temperature electro-synthesis of two-dimensional graphitic materials not been achieved before? We cannot offer a definitive answer. Perhaps disregarding ultra-catalysts such as liquid metals and too much emphasis on solid electrodes which are inherently not smooth.” added Dr Mohannad Mayyas the first author of the paper.

###

The paper Liquid-Metal-Templated Synthesis of 2D Graphitic Materials at Room Temperature was published in highly reputed journal of Advanced Materials on the 8th of June 2020 (DOI: 10.1002/adma.202001997)

Researchers from RMIT, University of California Los Angeles (UCLA) and the Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Korea are the other collaborators of the research and authors of the manuscript.

Contact detail: Dr. Mohannad Mayyas, [email protected]

Media Contact
Errol Hunt
[email protected]

Original Source

http://www.fleet.org.au/blog/liquid-metals-break-down-organic-fuels-into-ultra-thin-graphitic-sheets/

Related Journal Article

http://dx.doi.org/10.1002/adma.202001997

Tags: Chemistry/Physics/Materials SciencesElectromagneticsMaterialsNanotechnology/MicromachinesSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

MIT Study Reveals New Insights into Graphite’s Durability in Nuclear Reactors

MIT Study Reveals New Insights into Graphite’s Durability in Nuclear Reactors

August 15, 2025
Efficient Framework Models Ionic Materials’ Surface Chemistry

Efficient Framework Models Ionic Materials’ Surface Chemistry

August 15, 2025

Discovery of Intrinsic HOTI-Type Topological Hinge States in Photonic Metamaterials

August 15, 2025

Scientists Employ Innovative Technique in Quest to Unveil Elusive Dark Matter Particle

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Metabolic Inflammation Model Explains Teen Reproductive Issues

Mpox Virus Impact in SIVmac239-Infected Macaques

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.