• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, March 6, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Lighting the way to selective membrane imaging

Bioengineer by Bioengineer
November 4, 2020
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists at Kanazawa University demonstrate surface-specific molecular aggregates that emit visible light when attachment to artificial cell membrane surface with potential applications in new biological sensors and smart drug delivery platforms

IMAGE

Credit: Kanazawa University

Kanazawa, Japan – Researchers at Kanazawa University monitored the emission of blue-green light from water-soluble tetraphenylethene molecules adsorbed at a phospholipid-adsorbed liquid-liquid interface made to resemble a biomembrane. They found that the process could be reversibly controlled by an externally applied potential (voltage), which opens the possibility for a new class of molecular probes and targeted drug delivery systems.

The targeted delivery of therapeutic drugs or DNA directly to cells has many uses for treating disease, hence there is increasing interest in biomolecules that interact directly with cell membranes. Aggregation-induced emission (AIE), a promising technique with applications for functional materials, optoelectronics, and biomedical engineering, is a process by which self-aggregates can be made fluorescent upon stacking together. Tetraphenylethene (TPE) derivatives are propeller-shaped molecules with four phenyl rings which exhibit this property. Individually, these molecules are non-fluorescent, because their photo-excited states decay to the ground state through non-emissive molecular vibration or rotation. However, when several of these molecules aggregate together, they become fluorescent and emit blue-green light.

Researchers from the Institute of Science and Engineering at Kanazawa University studied the AIE behavior of water-soluble TPE derivatives on an artificial cell membrane surface that was formed by self-assembly of phospholipid molecules, which each have a hydrophilic (water-loving) “head” and two hydrophobic (water-fearing) “tails”. Phospholipids can also be used to make bubbles called vesicles that can fuse with living cell membranes to deliver a drug or DNA payload. “Potential applications of this work include the selective labeling of targeted vesicles containing pharmaceutical drugs,” says senior author of the study Hirohisa Nagatani. Using ion transfer voltammetry and surface-sensitive modulation spectroscopy, the research team was able to show that the phase transfer and interfacial adsorption of charged TPE molecules occurred reversibly based on an applied potential. This mimics the membrane potential of the living cells, which plays a crucial role in many physiological processes, including ion transportation and nerve impulse transmission. “The voltage-induced behavior we observed in simple water-soluble molecules may be important for the development of new sensitive probes of membrane potential for biomedical applications,” explains Nagatani. “Our system could also be an alternative to voltage-sensitive dyes as molecular probes”. The researchers also note the possibility of using this system as a photosensitizer for cancer phototherapy, in which cells can be selectively marked for light radiation.

###

Media Contact
Tomoya Sato
[email protected]

Original Source

https://pubs.acs.org/doi/10.1021/acs.langmuir.0c01962

Related Journal Article

http://dx.doi.org/10.1021/acs.langmuir.0c01962

Tags: BiochemistryChemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryNanotechnology/MicromachinesPharmaceutical SciencesPharmaceutical/Combinatorial Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Study shows cactus pear as drought-tolerant crop for sustainable fuel and food

March 5, 2021
IMAGE

Christopher Tunnell wins NSF CAREER Award

March 5, 2021

Tantalizing signs of phase-change ‘turbulence’ in RHIC collisions

March 5, 2021

Species are our livelihoods

March 5, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    668 shares
    Share 267 Tweet 167
  • People living with HIV face premature heart disease and barriers to care

    84 shares
    Share 34 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    39 shares
    Share 16 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Climate ChangecancerMaterialsCell BiologyChemistry/Physics/Materials SciencesBiologyTechnology/Engineering/Computer ScienceInfectious/Emerging DiseasesPublic HealthEcology/EnvironmentMedicine/HealthGenetics

Recent Posts

  • “Magic sand” might help us understand the physics of granular matter
  • Study reveals how egg cells get so big
  • Survey identifies factors in reducing clinical research coordinator turnover
  • New ‘split-drive’ system puts scientists in the (gene) driver seat
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In