• Scienmag
  • Contcat Us
Thursday, December 12, 2019
BIOENGINEER.ORG
No Result
View All Result
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Laser technique could unlock use of tough material for next-generation electronics

Bioengineer by Bioengineer
May 30, 2019
in Science
0

Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts

IMAGE

Credit: Purdue University image/Gary Cheng

WEST LAFAYETTE, Ind. — In 2004, researchers discovered a super thin material that is at least a 100 times stronger than steel and the best known conductor of heat and electricity.

This means that the material, graphene, could bring faster electronics than is possible today with silicon.

But to truly be useful, graphene would need to carry an electric current that switches on and off, like what silicon does in the form of billions of transistors on a computer chip. This switching creates strings of 0s and 1s that a computer uses for processing information.

Purdue University researchers, in collaboration with the University of Michigan and the Huazhong University of Science and Technology, show how a laser technique could permanently stress graphene into having a structure that allows the flow of electric current.

This structure is a so-called “band gap.” Electrons need to jump across this gap in order to become conduction electrons, which makes them capable of carrying electric current. But graphene doesn’t naturally have a band gap.

Purdue researchers created and widened the band gap in graphene to a record 2.1 electronvolts. To function as a semiconductor such as silicon, the band gap would need to be at least the previous record of 0.5 electronvolts.

“This is the first time that an effort has achieved such high band gaps without affecting graphene itself, such as through chemical doping. We have purely strained the material,” said Gary Cheng, professor of industrial engineering at Purdue, whose lab has investigated various ways to make graphene more useful for commercial applications.

The presence of a band gap allows semiconductor materials to switch between insulating or conducting an electric current, depending on whether their electrons are pushed across the band gap or not.

Surpassing 0.5 electronvolts unlocks even more potential for graphene in next-generation electronic devices, the researchers say. Their work appears in an issue of Advanced Materials.

“Researchers in the past opened the band gap by simply stretching graphene, but stretching alone doesn’t widen the band gap very much. You need to permanently change the shape of graphene to keep the band gap open,” Cheng said.

Cheng and his collaborators not only kept the band gap open in graphene, but also made it to where the gap width could be tuned from zero to 2.1 electronvolts, giving scientists and manufacturers the option to just use certain properties of graphene depending on what they want the material to do.

The researchers made the band gap structure permanent in graphene using a technique called laser shock imprinting, which Cheng developed in 2014 along with scientists at Harvard University, the Madrid Institute for Advanced Studies and the University of California, San Diego.

For this study, the researchers used a laser to create shockwave impulses that penetrated an underlying sheet of graphene. The laser shock strains graphene onto a trench-like mold – permanently shaping it. Adjusting the laser power adjusts the band gap.

While still far from putting graphene into semiconducting devices, the technique grants more flexibility in taking advantage of the material’s optical, magnetic and thermal properties, Cheng said.

###

The work was supported by multiple entities, including the National Science Foundation (Grant numbers CMMI-0547636 and CMMI 0928752) and the National Research Council Senior Research Associateship.

ABSTRACT

Asymmetric 3D Elastic-Plastic Strain-Modulated Electron Energy Structure in Monolayer Graphene by Laser Shocking

Maithilee Motlag1, Prashant Kumar1, Kevin Y. Hu1, Shengyu Jin1, Ji Li1, Jiayi Shao1, Xuan Yi1, Yen-Hsiang Lin2, Jenna C. Walrath2, Lei Tong3, Xinyu Huang3, Rachel S. Goldman2, Lei Ye3, and Gary J. Cheng1

1Purdue University, West Lafayette, IN, USA

2University of Michigan, Ann Arbor, MI, USA

3Huazhong University of Science and Technology, Wuhan, China

doi: 10.1002/adma.201900597

Graphene has a great potential to replace silicon in prospective semiconductor industries due to its outstanding electronic and transport properties; nonetheless, its lack of energy bandgap is a substantial limitation for practical applications. To date, straining graphene to break its lattice symmetry is perhaps the most efficient approach toward realizing bandgap tunability in graphene. However, due to the weak lattice deformation induced by uniaxial or in?plane shear strain, most strained graphene studies have yielded bandgaps

Media Contact
Kayla Wiles
[email protected]

Original Source

https://www.purdue.edu/newsroom/releases/2019/Q2/laser-technique-could-unlock-use-of-tough-material-for-next-generation-electronics.html

Related Journal Article

http://dx.doi.org/10.1002/adma.201900597

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterials

Related Posts

Science

Five or more hours of smartphone usage per day may increase obesity

by Bioengineer
July 25, 2019
IMAGE
Science

NASA’s terra satellite finds tropical storm 07W’s strength on the side

by Bioengineer
July 25, 2019
IMAGE
Science

NASA finds one burst of energy in weakening Depression Dalila

by Bioengineer
July 25, 2019

POPULAR NEWS

  • IMAGE

    What felled the great Assyrian Empire? A Yale professor weighs in

    0 shares
    Share 0 Tweet 0
  • Scientists discover how the molecule-sorting station in our cells is formed and maintained

    0 shares
    Share 0 Tweet 0
  • Nearly extreme black holes which attempt to regrow hair become bald again

    0 shares
    Share 0 Tweet 0
  • Scientists find eternal Nile to be more ancient than previously thought

    0 shares
    Share 0 Tweet 0
  • Early DNA lineages shed light on the diverse origins of the contemporary population

    0 shares
    Share 0 Tweet 0
ADVERTISEMENT

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent Posts

  • Depression, anxiety may hinder healing in young patients with hip pain
  • Fundamental discoveries for future nanotools: Chemists distinguish multiple weak forces
  • Estimates of ecosystem carbon mitigation improved towards the goal of the Paris agreement
  • A guidebook for local governments and CBOs to support elderly people to take out the trash

Tags

Aging Agriculture Atmospheric Science Behavior Biochemistry Biodiversity Biology Biomedical/Environmental/Chemical Engineering Biotechnology cancer Cardiology Cell Biology Chemistry/Physics/Materials Sciences Climate Change Clinical Trials Computer Science Earth Science Ecology/Environment Electrical Engineering/Electronics Evolution Genes Genetics Health Care Health Care Systems/Services Health Professionals Immunology/Allergies/Asthma Infectious/Emerging Diseases Marine/Freshwater Biology Materials Medicine/Health Mental Health Microbiology Molecular Biology Nanotechnology/Micromachines neurobiology Nutrition/Nutrients Pediatrics Pharmaceutical Science Physiology Plant Sciences Public Health Research/Development Social/Behavioral Science Technology/Engineering/Computer Science Zoology/Veterinary Science
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Login to your account below

Forgotten Password?

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In