• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Kirigami inspires new method for wearable sensors

Bioengineer by Bioengineer
October 22, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Illinois at Urbana-Champaign Department of Mechanical Science and Engineering.

As wearable sensors become more prevalent, the need for a material resistant to damage from the stress and strains of the human body’s natural movement becomes ever more crucial. To that end, researchers at the University of Illinois at Urbana-Champaign have developed a method of adopting kirigami architectures to help materials become more strain tolerant and more adaptable to movement.

Similar to origami, the more well-known art of paper-folding, kirigami involves cutting in addition to folding. The team led by SungWoo Nam, associate professor of Mechanical Science and Engineering, and Keong Yong successfully applied kirigami architectures to graphene, an ultra-thin material, to create sensors suitable for wearable devices.

“To achieve the best sensing results, you don’t want your movement to generate additional signal outputs,” Nam noted. “We use kirigami cuts to provide stretchability beyond a material’s normal deformability. This particular design is very effective at decoupling the motion artifacts from the desired signals.”

To achieve those results, the research team was able to perform a number of simulations by collaborating with Narayana Aluru, professor of Mechanical Science and Engineering, and by developing online software on a nanomanufacturing node, the first of its kind to be developed. The online software platform permits researchers to perform simulations before creating the actual devices or platforms.

Once the team came up with a design that worked well in simulation, it was time to put it to the test. Graphene seemed promising as a material because it could withstand significant deformation and breaking when compared to metals and other conventional materials. Because graphene is an atomically thin material, the research team was able to encapsulate the graphene layer between two polyimide layers (the same material used to protect foldable smartphones). Once the “sandwich” was created, they next engineered kirigami cuts to enhance the stretchability of the material.

“Because graphene is sensitive to external changes, yet also a flexible semimetal conductor, people are very interested in creating sensors from it,” Nam said. “This sensitivity is well suited for detecting what is around you, such as glucose or ion levels in sweat.”

The team found that adopting a kirigami architecture made the graphene not only stretchable, but also strain-insensitive and free from motion artifacts, meaning that even as it was deformed, there was no change in electrical state. Specifically, they found that the graphene electrodes exhibited strain-insensitivity up to 240 percent uniaxial strain, or 720 degrees of twisting.

They published the results of their study in Materials Today.

“What’s interesting about kirigami is that when you stretch it, you create an out of plane tilting,” Nam said. “That is how the structure can take such large deformations.”

In their design, the researchers put the active sensing element on an “island” between two “bridges” made from kirigami graphene. While the graphene did not lose any electrical signal despite the bending and tilting, it still took the load from the stretching and straining, enabling the active sensing element to remain connected to the surface. As such, kirigami has the unique ability to redistribute stress concentrations, thereby achieving enhanced directional mechanical attributes.

While the research team successfully proved the basic method, they are already working on improvement in version 2.0 with the possibility of eventually commercializing the technology.

The team also had positive results using polydimethylsiloxane (PDMS) as the sandwich layers and believe that, in addition to graphene, the design could also extend to other atomically-thin materials such as transition metal dichalcogenides.

###

Media Contact
SungWoo Nam
 @EngineeringAtIL

217-300-0267

Original Source

https://grainger.illinois.edu/news/34616

Related Journal Article

http://dx.doi.org/10.1016/j.mattod.2019.08.013

Tags: Biomechanics/BiophysicsBiotechnologyDiagnosticsElectromagneticsHealth Care Systems/ServicesMaterialsNanotechnology/MicromachinesSuperconductors/SemiconductorsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Ultra-Precise Laser Spectroscopy Reveals Proton-Electron Mass

Ultra-Precise Laser Spectroscopy Reveals Proton-Electron Mass

August 6, 2025
Aging Impairs Pulmonary Endothelial Cell Reprogramming

Aging Impairs Pulmonary Endothelial Cell Reprogramming

August 6, 2025

Element Analysis of Amalgam Reveals Scandinavian Timeframe

August 6, 2025

New Scale Assesses Food and Alcohol Disturbance

August 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    75 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ultra-Precise Laser Spectroscopy Reveals Proton-Electron Mass

Aging Impairs Pulmonary Endothelial Cell Reprogramming

Element Analysis of Amalgam Reveals Scandinavian Timeframe

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.