• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Key uncertainties identified for models of mosquito distribution in the US

Bioengineer by Bioengineer
October 10, 2019
in Immunology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Understanding model limitations could improve strategies to deal with mosquito-borne diseases

IMAGE

Credit: CDC/ Prof. Frank Hadley Collins.


A computational analysis has identified key regions in the United States where model-based predictions of mosquito species distribution could be improved. Andrew Monaghan of the University of Colorado Boulder and colleagues present these findings in PLOS Computational Biology.

Aedes aegypti and Aedes albopictus mosquitoes are globally important species that can transmit dengue, chikungunya, yellow fever, and Zika viruses. However, data on their geographic distribution are very limited. Computational models can help fill in the gaps by providing predictions of where mosquitos may be found, but the accuracy of such models is difficult to gauge.

To address this issue, Monaghan and colleagues assessed and combined previously developed computational models to generate new predictions of the chances of finding Ae. aegypti and Ae. albopictus in each county in the contiguous United States. Then, they compared their estimates with real-world mosquito collection data from each county.

The researchers found that existing models have gaps that had not previously been identified, despite the relatively high availability of mosquito data in the U.S. compared to other countries. They found high uncertainty of the models in predicting the presence of Ae. aegypti and Ae. albopictus across broad regions likely to be borderline habitats for these species. They also discovered key pockets where the models appear to be biased, such as the Florida panhandle and much of the Southwest for Ae. aegypti.

“By comparing analytical models and data, we identified key gaps in mosquito surveillance data and models,” says senior author, Michael Johansson. “Understanding those limitations helps us to be better prepared for infectious disease threats today and to focus on key needs to be even better prepared tomorrow.”

The findings point to the need for additional data and improved models to advance understanding of the range of mosquito species and risk of disease transmission around the world. Johansson and colleagues are now organizing an ongoing collaborative project to systematically collect more mosquito data in the United States and analyse new models, shedding new light on species distribution.

###

In your coverage please use this URL to provide access to the freely available article in PLOS Computational Biology:
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007369

Citation: Monaghan AJ, Eisen RJ, Eisen L, McAllister J, Savage HM, Mutebi J-P, et al. (2019) Consensus and uncertainty in the geographic range of Aedes aegypti and Aedes albopictus in the contiguous United States: Multi-model assessment and synthesis. PLoS Comput Biol 15(10): e1007369. https://doi.org/10.1371/journal.pcbi.1007369

Funding: This work was supported by the United States Centers for Disease Control and Prevention. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

Competing Interests: The authors have declared that no competing interests exist.

Media Contact
CDC Media Relations
[email protected]

Related Journal Article

http://dx.doi.org/10.1371/journal.pcbi.1007369

Tags: BiodiversityBioinformaticsBiologyDisease in the Developing WorldEcology/EnvironmentEntomologyEpidemiologyInfectious/Emerging DiseasesMedicine/HealthZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    138 shares
    Share 55 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    77 shares
    Share 31 Tweet 19
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    56 shares
    Share 22 Tweet 14
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Key Biophysical Rules for Mini-Protein Endosomal Escape

Uranium Complex Converts Dinitrogen to Ammonia Catalytically

Kombucha’s Pharmaceutical Potential: Production, Patents, Challenges

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.