• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, April 13, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Jumping frost crystals: Boreyko lab works toward electrostatic de-icing

Bioengineer by Bioengineer
February 24, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Virginia Tech

If you have ever gotten up on a winter morning and thrown yourself into the arduous task of scraping frost from a windshield, a Virginia Tech lab is engaging science [IS1] that could make your life much easier. In research funded by the National Science Foundation, Associate Professor Jonathan Borekyo has led a team in developing a potential solution for frost removal by way of electrostatics.

As water freezes, positively charged protons and negatively charged electrons separate. Frozen ice crystals become electrified as the top of the frost becomes warmer than the bottom of the frost. This causes charged ions to move from top to bottom (warm to cold), but it turns out that the positive ions can migrate faster. The top of the frost ends up being negatively charged while the bottom is more positively charged, a concept known as charge separation.

Charge separation in frost has been studied in the past, but the effect has never been exploited to remove the frost from its surface. Boreyko’s Nature-Inspired Fluids and Interfaces Lab set out to fill that gap. The team started by artificially creating frost on a surface. They then suspended a film of water above the frost using filter paper. Opposites attract, so the negatively-charged top of the frost sheet attracted the positive ions in the water. This generated an electric field that exerted an attractive force on the frost sheet.

Using a high-speed camera, the team observed frost particles breaking off their substrate and jumping toward the opposing film of water. Frost was grown on both metal and glass surfaces, indicating that the jumping frost effect is possible regardless of the thermal and electrical properties of the object holding the water.

With this data in hand, the team is moving to larger scales in their testing. The ice particles in this experiment were very small in size, each only a few millimeters or less. Boreyko’s team is working toward removing large sheets of ice by increasing the amount of charge that comes near the frost. By replacing warm water with actively charged electrodes, the small frost jumps could become large-scale ice evacuations.

“If we can amplify this electrostatic de-icing effect, such that entire sheets of ice or frost are instantly ripped away from their surface, it could be a game-changer for the aircraft and HVAC industries,” said Borekyo.

###

These findings were published in ACS Nano. The article’s lead author was Ranit Mukherjee, a graduate student in Boreyko’s lab.

– written by Alex Parrish

Media Contact
Emily Roediger
[email protected]

Original Source

https://vtnews.vt.edu/articles/2021/02/me-research-boreykofrost022021.html

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyElectromagneticsMechanical EngineeringResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Jan Rajchmann Award for OLED professor Karl Leo

April 12, 2021
IMAGE

Technique allows mapping of epigenetic information in single cells at scale

April 12, 2021

Poop core records 4,300 years of bat diet and environment

April 12, 2021

Centrifugal multispun nanofibers put a new spin on COVID-19 masks

April 12, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    852 shares
    Share 341 Tweet 213
  • Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    60 shares
    Share 24 Tweet 15
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14
  • A sturdier spike protein explains the faster spread of coronavirus variants

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

cancerPublic HealthInfectious/Emerging DiseasesCell BiologyClimate ChangeEcology/EnvironmentMedicine/HealthBiologyMaterialsGeneticsChemistry/Physics/Materials SciencesTechnology/Engineering/Computer Science

Recent Posts

  • Ancient ammonoids’ shell designs may have aided buoyancy control
  • Basketball Mathematics scores big at inspiring kids to learn
  • Past Global Changes Horizons – a new paleoscience magazine for teenagers and young adults
  • ETRI develops a haptic film activated by LEDs
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In