• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, August 16, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Interactive size control of catalyst nanoparticles

Bioengineer by Bioengineer
December 6, 2018
in Health
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: IPC PAS, Grzegorz Krzyzewski


5, 10, or maybe 15? How many nanometers should nanoparticles of a catalyst be to optimize the course of the reaction? Researchers usually look for the answer by laborious, repetitive tests. At the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw, a qualitatively new technique was developed to improve the process of such optimization in microfluidic systems. The size of the catalyst nanoparticles can now be changed interactively, during a continuous flow through the catalyst bed.

The performance of metal-carrier catalysts often depends on the size of metal nanoparticles. Usually, their size is determined over many consecutive, laborious tests. The method is not flexible enough: once reactions have started, nothing can be done with the catalyst. At the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw, in the group of Dr. Jacinto Sa, a new technique was developed that allows for optimization of chemical reactions during the continuous microfluidic flow through the catalyst bed, and thus literally “on the fly”. This was achieved through interactive control of the size of the catalyst nanoparticles. Due to its simplicity and efficiency, this innovative technique should soon be used in the research on the new catalysts for the pharmaceutical and perfumery industries, among others.

“Flow catalysis is becoming more and more popular because it leads to the intensification of processes important for the industry. Our technique is the next step in this direction: we reduce the time needed to determine the sizes of catalyst nanoparticles. That means we can faster optimize the chemical reactions and even interactively change their course. An important argument here is also the fact that the entire process is carried out within a small device, so we reduce costs of additional equipment,” says Dr. Sa.

Scientists from the IPC PAS demonstrated their achievement with a system based on a commercially available flow microreactor, equipped with a replaceable cartridge with an appropriately designed metal catalyst. By electrolysis of water, the selected microreactor could supply hydrogen, necessary for the hydrogenation of chemical compounds in the flowing liquid, to the catalyst bed. The reaction medium was a solution of citral, an organic aldehyde compound with a lemon scent.

The nickel catalyst NiTSNH2 used in the experiment, in the form of a fine black powder, was previously developed at the IPC PAS. It consists of grains of polymeric resin covered with nickel nanoparticles. The grain size is approx. 130 micrometers and the nanoparticles of the catalyst are initially 3-4 nanometers.

“At the core of our achievement is to show how to modify the morphology of catalyst nanoparticles in a sequence with a chemical reaction. After each change in the size of the nanoparticles, we get immediate information about the effect of this modification on the catalyst activity. Therefore, it is easy to assess which nanoparticles are optimal for a given chemical reaction,” explains PhD student Damian Gizinski (IPC PAS).

In the system described in the journal ChemCatChem, the researchers increased the size of the catalyst nanoparticles to 5, 9 and 12 nm in a controlled manner. The growth effect was achieved by flushing the catalyst bed with an alcohol solution containing nickel ions. Within the bed, they were deposited on the existing nanoparticles and reduced under the influence of hydrogen. The final size of the nanoparticles depends here on the exposure time to the solution with Ni2+ ions.

In the reaction with citral, the best catalytic performances were attained with 9 nm nanoparticles. The researchers also observed that up to 9 nm the growth of nanoparticles favored the redirection of the reaction towards citronellal production, while above this value the pathway to the citronellol was preferred (differences resulted from the fact that smaller nanoparticles favored selective hydrogenation of unsaturated bond C=C, while larger ones activated both the bond C=C and the carbonyl bond C=O). These two compounds have slightly different properties: citronellal is used to repel insects, especially mosquitoes, and as an antifungal agent; citronellol not only repels insects but also attracts mites, it is also used to produce perfumes.

For potential applications of the new technique, it is important that after the modification, the catalysts were stable at least five hours in a continuous flow of the reaction solution, both in respect to its activity and selectivity.

###

Research on the interactive modification of catalysts was financed from the OPUS grant from the Polish National Science Center.

The Institute of Physical Chemistry of the Polish Academy of Sciences was established in 1955 as one of the first chemical institutes of the PAS. The Institute’s scientific profile is strongly related to the newest global trends in the development of physical chemistry and chemical physics. Scientific research is conducted in nine scientific departments. CHEMIPAN R&D Laboratories, operating as part of the Institute, implement, produce and commercialize specialist chemicals to be used, in particular, in agriculture and pharmaceutical industry. The Institute publishes approximately 200 original research papers annually.

Media Contact
Dr. Jacinto Sa
[email protected]
48-223-433-320

Related Journal Article

http://dx.doi.org/10.1002/cctc.201800581

News source: https://scienmag.com/

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsNanotechnology/MicromachinesPharmaceutical/Combinatorial ChemistryPolymer ChemistryResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

Pre-fertilization DNA transfer to avoid mitochondrial disease inheritance appears safe

Pre-fertilization DNA transfer to avoid mitochondrial disease inheritance appears safe

August 16, 2022
A doctor's journey through constraints and creativity in the ER

A doctor’s journey through constraints and creativity in the ER

August 16, 2022

A novel method for monitoring the ‘engine’ of pregnancy

August 16, 2022

Do wind instruments disperse COVID aerosol droplets?

August 16, 2022
Please login to join discussion

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

UrbanizationUrogenital SystemVirologyWeaponryVaccineVirusUniversity of WashingtonVaccinesZoology/Veterinary ScienceVehiclesViolence/CriminalsWeather/Storms

Recent Posts

  • Wood sharpens stone: boomerangs used to retouch lithic tools
  • Pre-fertilization DNA transfer to avoid mitochondrial disease inheritance appears safe
  • New standardized framework allows conservationists to assess benefits of non-native species
  • Is universal healthcare progress related to changes in childhood vaccination rates?
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In